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ABSTRACT 
 
 
 
The Navy is considering the use of unmanned surface vehicles (USVs) to reduce 

risk to personnel in maritime interdiction operations, and to conduct intelligence, 

surveillance and reconnaissance (ISR) and force protection (FP) missions.  In this thesis, 

alternative configurations of the prototype and operational uses of the USV are explored 

using agent-based simulation for three scenarios.  An efficient experiment design alters 

settings of ten factors for the two ISR scenarios and 11 factors for the FP scenario.  Some 

factors varied in the experiment are uncontrollable during operations, such as the total 

number of contacts, threat density, their maneuvering characteristics, and the sea state.  

The USV sensor range and endurance are also considered as well as factors set by the 

decision-maker for a particular mission:  namely, USV speed and numbers to deploy.  

The results provide several operational and tactical insights with implications for 

patrolling and combat radius, and form the basis for a recommendation to use the USV in 

an active role in maritime missions.  The results also support the guidance on the benefits 

of improving USV sensing and endurance capabilities, and find that simply increasing 

USV numbers is not necessary for attaining high mission performance. 
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EXECUTIVE SUMMARY 
 
The Navy is considering distributed means of conducting surveillance and 

reconnaissance using unmanned surface vehicles (USVs) (Ricci, 2002).  An attack on 24 

April 2004 against Sailors in a Rigid Hull Inflatable Boat (RHIB) makes the notion more 

relevant.  During maritime interdiction operations (MIO) in the Arabian Gulf, a 7-

member crew RHIB proceeded to intercept and board an unidentified dhow for 

investigation.  As the RHIB approached the dhow, it exploded—killing two Sailors and 

wounding four others.  Two other unidentified dhows also exploded the same day (Navy 

Newsstand, 2004).  These incidents give solid motivation for the USV to be integrated 

into daily operations in the Fleet. 

Using agent-based simulation to analyze information, surveillance, and 

reconnaissance (ISR) and force protection (FP) missions, each model depicts USVs, 

enemies, neutrals, and a high value unit (HVU).  The USVs leave the HVU in pursuit of 

accurate identification of contacts in its field of view.  There are two ISR models:  a 

Waypoint scenario which provides a predetermined path for each USV to follow, and an 

Interceptor scenario, in which the USV is free to move on any path.  The FP Model has 

two types of enemies:  threatening and non-threatening.  This model assesses the ability 

of each USV to prevent threatening enemies from reaching the HVU.    

This thesis looks at ten factors for the ISR Models: 

USV speed, • 

• 

• 

• 

• 

• 

• 

• 

Enemy speed, 

Neutral speed, 

Sea state, 

Number of USVs, 

Number of Contacts, 

Percentage of contacts that are enemy, 

Sensor range, 

 xv



Tactical radius from the HVU, and • 

• Time on station. 

The FP model enables consideration of eleven factors, including all of those in the 

ISR analysis with the exception of the time on station and with the addition of threatening 

enemy speed and percentage of enemies that are threatening.  The measures of 

effectiveness (MOEs) are the proportion of enemies detected.  The FP scenario has two 

additional MOEs:  the proportion of threatening enemies detected and the number of 

threatening enemies that reach the HVU.   

One factor that is significant in each of the five analyses is the number of USVs.  

USV speed is significant in all analyses except the FP-number that reach the HVU.  

Sensor range and time on station are important in the two ISR scenarios.  Finally, the 

percentage of threatening enemies is significant in each of the FP analyses.  USV speed, 

the number of USVs available to the HVU, sensor range, and time on station are all 

controllable factors.  Percentage of threatening enemies is the only common factor that is 

not controllable.  This analysis shows that the Navy can make a decision to deploy the 

USV in one of the three proposed scenarios without having to rely on intelligence or 

make assumptions regarding inaccessible information.  This is not to say that the models’ 

other significant factors are trivial; only that if, for example, the situation at hand would 

evolve from an Interceptor scenario to a FP scenario, some important information is 

already known about the impact of the number of USVs, the USV speed, and the sensor 

range. 

Preventing fatal incidents such as the lethal April 2004 event is an advantage to 

implementation of the USV into the Fleet.  Multiple linear regression and regression trees 

are coupled with an experimental design that analyzes up to 11 factors simultaneously.  

This provides insights into USV configuration into the Fleet putting a stop to fatal MIO 

operations.  These insights include working toward covering a 1600 sq-nm area with 16-

20 USVs per HVU, enabling the platforms to be able to stay away from the HVU for at 

least 7.5 hours, and designing either an increased range that the USVs can travel from the 

HVU or an improved sensor range to increase the proportion of detections.  

 xvi



I. INTRODUCTION  

A. UNMANNED SURFACE VEHICLES 
The Navy is considering distributed means of conducting surveillance and 

reconnaissance using unmanned surface vehicles (USVs) (Ricci, 2002).  An attack on 24 

April 2004 against Sailors in a Rigid Hull Inflatable Boat (RHIB) makes the notion more 

relevant.  During maritime interdiction operations (MIO) in the Arabian Gulf, a 7-

member crew RHIB proceeded to intercept and board an unidentified dhow for 

investigation.  As the RHIB approached, the dhow exploded—killing two Sailors and 

wounding four others.  Two other unidentified dhows also exploded the same day (Navy 

Newsstand, 2004).  These incidents give solid motivation for the USV to be integrated 

with daily operations in the Fleet. 

The US Navy has a prototype USV that deployed with the USS GETTYSBURG 

(GET).  Essentially a 7-meter RHIB that has been configured for ISR, the current USV 

contains an electro-optical/infrared (EO/IR) camera, commercial grade radar, microphone 

and a loudspeaker.  It is radio controlled with a current range of five nautical miles (nm) 

from the host ship.  The USV is gas-powered with a projected endurance of six hours and 

a 10-foot height of eye.  A picture of Spartan Scout, the prototype USV, is provided in 

Figure 1. 
 

 

 

 

 

 

 

 

 

Figure 1.   Spartan Scout Controlled from GET  (Rich, 2003) 

1 



The US Navy is in the initial stages of procurement of the USV.  Several potential 

uses exist.  Surveillance enables the host ship to detect and identify other objects on the 

seas that are outside of the visual and radar range of the vessel from which the USV is 

operating.  Along with surveillance, interception, defined as the ability to move towards 

the potential threatening contact, is a mission essential task especially for MIO.  The 

combination of surveillance and maritime interdiction capabilities expected from the 

USV is integral to provide the Navy the ability to perform these missions while the host 

ship continues on operational tasking and maintains its position.  Another need for the 

USV is Force Protection (FP), as evidenced by the April 2004 attack cited earlier.  The 

host platform can allocate its resources in different ways to ensure proper defense.  Mine 

warfare is another projected use of the USV, but not covered in the current study.    

The operations of the prototype, Spartan Scout, tested its intelligence, surveillance 

and reconnaissance (ISR) capabilities.  The tests occurred on December 1-2, 2003 and 

January 19-22, 2004. (Rich, 2003 and Quarderer, 2004).  Along with ISR information, 

the other data collected during this live testing inform this current research in determining 

the benefits and shortcomings of adding the USV to missions in the fleet.  Unfortunately, 

the possibilities for gaining insights are limited when only a single prototype is available.  

Instead, this thesis uses agent-based simulation to determine configurations for the USV 

and the unit from which the USV is deployed.   

An agent-based simulation is used to evaluate the performance of configurations 

and operational use of the USV.  The simulation varies these current characteristics of the 

prototype among the missions expected of a USV in the Navy.  The results form the basis 

for a recommendation to the US Navy to use the USV in an active role in maritime 

missions.  The simulation looks at the type of mission as well as the sea state in which the 

mission is to be performed in.  In order to fully capture the essence of agent-based 

simulation, the model experiments with the number of USV’s to be deployed per High 

Value Unit (HVU) throughout simulations so that activity differences can be detected 

with low and high numbers of USV’s. 
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B. PURPOSE AND MOTIVATION 

 The Navy has only recently begun to procure these assets, and it has not yet 

developed operational procedures for the USV(s).  Determining whether or not the USV 

benefits fleet operations is desirable.  Being able to emulate actual scenarios that would 

be useful to the ships in the fleet in an agent-based simulation is an objective of this study 

as well.  Three scenarios of interest are: 

Maintaining a recognized maritime picture (RMP) of a large number of 

vessels; 

• 

• 

• 

Sorting out and tracking a specific contact of interest out of a number of 

routine vessels; and, 

Detecting, identifying and tracking a high-density group of contacts of interest 

among a number of contacts. 

Another intention is to estimate USV performance under a variety of situations 

with a confidence that is acceptable to the Navy.  These performance estimates provide 

information and insights that can assist decision-makers or lead to further research 

involving specific areas of interest, tactical applications, or operational scenarios. 

 Undertaking this topic came as a function of the author’s future as a Surface 

Warfare Officer in the Navy.  Since the USV is in its beginning stages of development 

and testing, it appears to be a great place to begin research for a thesis as well as 

background for a future SWO.  Knowing that this thesis has the potential for further 

developments within the fleet or even for further research is inspiring and encouraging.   

C. SCOPE AND METHODOLOGY 

3 

This study uses an agent-based simulating platform PYTHAGORAS to model the 

performance of the USV with respect to its current capabilities.  Agent-based simulations 

are those in which the entities and objects that make up the model behave disjointedly 

(Sanchez and Lucas, 2002).  Each entity of a squad, for example, is defined in the exact 

same manner.  The entities, or agents, act independently of other agents in the squad.  For 

military applications, this logic seems applicable.  Training in the military is, for all 

intents and purposes a constant factor for the members, but each member takes what is 

commanded and, in conjunction with the environment, makes decisions separately from 

the other members in the group.  More detailed explanations of agent-based simulation 



and analysis can be found in Sanchez and Lucas (2002).  The models developed in this 

thesis are able to capture the way USVs act under a variety of circumstances.  Factors 

that are varied throughout the modeling include: 

Sea state, • 

• 

• 

• 

• 

Speed of USV and targets, 

How close the USV must get to a target for accurate identification, 

Number of USVs to send out for particular mission, and 

Combat radius (the length of time to and on station) under the various factors. 

Among the factors that are varied, experiments determine with statistical 

significance whether the manner of deploying USVs should be on a given patrol pattern 

as opposed to the USV choosing the closest enemy to pursue.  Another desired outcome 

of this thesis is to see if the factors examined yield evidence whether the USV is the best 

solution to the tactical problem.  Varying these factors, in conjunction with operational 

scenarios, covers some ground to provide useful insights to the Navy, but it is optimistic 

to expect this study to enable the necessary decisions for full implementation of the USV 

into the Fleet under all circumstances. 

 Every problem needs answers.  Therefore it is necessary to define the correct 

questions and specific problem statements to be answered.  The organization of the 

remainder of this encompasses an approach toward answering each of the following 

questions and statements.  Chapter II contains an overview of the assumptions made to 

develop the models, the models’ capabilities, and descriptions.  Chapter III is the design 

of experiments explaining the design process, the factors analyzed throughout analysis, 

and the tactical interpretation.  The analysis of each model, verification and validation, 

and results are included in Chapter IV.  The final chapter consists of the conclusions of 

the analysis, lessons learned regarding the use of agent-based simulation for analyzing 

USV deployment and recommendations for further research on this topic. 

D. PAYOFFS AND BENEFITS 
 This thesis benefits the researchers and supporters of the USV, and it seeks to 

support Fleet-wide decisions on whether the USV should be implemented into tactical 

operations.  One series of experiments in this study could aid in determining whether the 

4 



current configuration of the USV should be altered, including whether weapons should be 

added or if any of the other four capabilities, (force protection, surveillance, maritime 

interdiction or mine warfare) should be fully implemented to obtain optimal performance. 

As a direct link to disseminate information for the benefit of USV researchers and 

supporters, the results of this thesis are implemented into a TACMEMO (Statement of 

Work, 2003).  The best benefit that the Fleet can have is preventing the death and injury 

of Sailors.  The MIO incident on 24 April 2004 is an example of why USVs are necessary 

in the current tactical environment.  
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II. SCENARIO DESCRIPTION 

A. ASSUMPTIONS AND CAPABILITIES 
The scenarios included in this study are the prototype of the Spartan Scout 

(Scenario-P), two proposed Information, Surveillance and Reconnaissance (ISR) 

scenarios and one proposed Force Protection (FP) scenario.  The ISR models include a 

Waypoint scenario (Scenario-W) and an Interceptor scenario (Scenario-I).  The proposed 

scenarios are explained in more detail later.  Analyzing a tactical problem using 

simulation requires abstraction of a scenario using tactical information while seeking to 

retain a sufficient level of resolution.  For this thesis, several basic assumptions enable 

the problems to be implemented on the PYTHAGORAS simulation platform and make 

the results comprehensible.  Because this is an abstraction of a tactical scenario, the 

model needs to be verified and validated so that the results are credible (Law and Kelton, 

2000).  The verification and validation are expanded in Chapter IV. 

An important concept underlying all three scenarios is that USVs deploy from 

High Value Units (HVUs).  The HVUs can be a Carrier or Expeditionary Strike Group, 

(CSG and ESG, respectively), or any generic HVU.  The HVU is composed of a number 

of ships, or even a single defended asset, responsible for the each USV.  It is not correct 

to assume that the HVU has direct control of each USV, but that individual units within 

the CSG or ESG are responsible for their respective USVs.  For simplicity, the USVs in 

the ISR and FP scenarios are not represented as deploying from individual ships.  Instead 

the group controls the USVs.  When viewed within the context of a tactical situation, ISR 

assets are typically treated as common resources for the entire task group.  Therefore, the 

assumption that each USV is controlled by any unit is realistic, and emulates how the 

chain of command may evolve. 

Another abstraction of the PYTHAGORAS models is that some meteorological 

factors are not included in the development of the simulations, including wind, current, 

tides, and sea surface temperature.  These are factors that the meteorology and 

oceanographic (METOC) community predict would have an effect on a USV (Joint 

METOC Handbook, 2000).  While these factors are omitted from the simulation for 
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simplicity, their effects on visibility and maneuverability do exist.  Sea state is another 

factor important by the METOC community and it is included in the simulation.  This is 

discussed in more detail in Chapter III. 

One final factor not incorporated into the simulations is latency.   Latency is the 

delay as data are relayed from each USV to the HVU so the operator can control the 

vehicle or identify a contact.  The average latency from live USV prototype 

experimentation was 0.204 seconds with a standard deviation of 0.037 (Quarderer, 2004). 

Since each simulation time step is 72 seconds, this small amount of time for data latency 

essentially becomes absorbed within the time step. Therefore the simulation models are 

slightly optimistic because the data latency does affect control of the USV.  

PYTHAGORAS can model these effects by increasing the “hold fire desire” property in 

the “engagement desires” in the simulation.  “Hold fire desire” can be thought of as a 

probability that the agent has to wait to act.  This defines whether each USV takes action 

or not with a certain non-zero probability.  An area for further research is rescaling the 

problem so that the time steps are less than one second, enabling effective modeling of 

latency. 

 

B.   SCENARIOS 
Scenario-P closely represents the results from several prototype exercises 

conducted onboard the USS GETTYSBURG (GET).  The model is based on a single 

USV operating within a five nautical mile (nm) radius, limited by the controlling Radio 

Frequency (RF) from its host ship.  The range drives the overall dimension of the 

scenario, which is 10 nm by 10 nm.  The USV has radar with a range of 16 nm and an 

Electro-Optical/Infra-Red (EO/IR) camera for visual detection, and sends its data to the 

host via a real-time link to shipboard video consoles.  The USV pursues contacts that 

require closer investigation.  The contacts are neutral merchant ships and contacts of 

interest.  Scenario-P serves as the base scenario for verification that the simulation 

models are in compliance with the tactical situation.  The only run done on this scenario 

is confirmatory, to verify its concurrence with the live prototype results. 
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The three experimental scenarios are designed with the purpose of emulating 

operational possibilities for the USV.  The scope of the proposed scenarios is an area of 

interest of 1600 square-nm in the open seas near possibly high-traffic regions.  Scenarios-

W and -I are similar except in one way—the USV movement patterns.  In Scenario-W, 

each USV has predetermined patrol patterns, or waypoints.  Each USV is initially placed 

at the HVU and patrols along the prespecified paths.  Scenario-I explores ISR operations 

when each USV takes a closer look at nearby contacts of interest as designated by the 

CSG or ESG.  The scenario begins with the USV departing the HVU and traveling to the 

nearest enemy.     

In PYTHAGORAS, in order for one agent to be able to investigate another agent, 

it is necessary that they be on opposing sides.  In each of the two ISR scenarios, there are 

two types of opposition, representing ships that are merchant ships (a noise factor), as 

well as the contacts from which the friendly force is truly looking to gather intelligence.  

The experiments (discussed in detail in Chapter III) are set up so that each model 

provides information on the proportion of enemies detected in each scenario and 

compares outcomes between the two ISR scenarios. 

This study also uses PYTHAGORAS to implement Force Protection capabilities 

as well as ISR capabilities.  Scenario-FP is a scenario where the ratio of attackers to 

defenders is high.  The Force Protection scenario has three classifications of enemies, for 

PYTHAGORAS purposes.  As mentioned for the ISR scenarios, there are both neutral 

contacts and opposing forces within the USV field of regard that are not possible threats 

to the HVU.  The additional force of enemies is threatening, and these hostile contacts act 

nearly simultaneously to attack the HVU.  Each USV opposing forces looks for their 

nearest enemy to investigate.  The neutral contacts and non-threatening enemies act as 

noise factors for this scenario.  The experiment is set up so the model will provide 

information on the proportion of enemies detected, the proportion of threatening enemies 

detected, and the number of enemies that reach the HVU. 
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C. SCENARIO DESIGN 

 

Waypoint 
Undetected 
Neutral 

USV 
Detected 
Neutral 

Undetected 
Enemy 

Detected 
Enemy 

HVU

Figure 2.   Screen Shot of Waypoint Scenario in PYTHAGORAS 
 

These models require translation into the language of PYTHAGORAS in order to 

be compatible with the real world scenario.  The modeling platform uses pixels for 

distances, and speed is in pixels/time step.  Properties such as the speed of the individual 

agents determine the agent’s position and state after each time step.  Every scenario has 

agents representing three forces: friendly, neutral, and enemy.  Figure 2 displays the 

agents in the Waypoint scenario.  Each force has its unique properties that determine 

movement and activity.  The friendly force consists of the HVU and all of the USVs.  

Neutrals, such as merchant vessels, represent those ships that are simply moving 

randomly throughout the area, interacting with neither the enemy nor the friendlies.  

Although this force is neutral, PYTHAGORAS represents these contacts as enemies, so 

the USV has reason to approach them.   
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Enemy agents are different depending on the desired mission, ISR or FP, for 

analysis.  Enemy movements for ISR scenarios are as follows, in descending order of 

their desire:  

Move away from nearest enemy if closer than two nm,  • 

• 

• 

Maintain last course,  

Move randomly about the space.  

The enemies in the FP scenario act more hostile in order to get to the HVU.  This is 

explained in detail later. The only movement desire the neutral agents possess is to move 

in a random direction.  All agents have the ability to possess sensors and weapons, and 

specific speeds, and movement desires.  Movement desires can be selected by four 

different methods: highest desire, average desire, random desire, or the top two desires 

(Bitinas, 2004).   

PYTHAGORAS requires each agent to possess a weapon and a sensor.  However, 

to model agents without a sensor or weapon, the platform can use dummy weapons which 

have they have a zero-probability of kill.  Each agent type in these scenarios possesses a 

sensor so a dummy sensor is not necessary.  For all scenarios explored, the HVU inhabits 

the center.  To reduce the simulation models’ complexity, movements of each agent 

(USV, enemy or neutral) are considered relative to the motion of the HVU; therefore, the 

effect is that of a maneuvering board or a radar display onboard the HVU. 

Other features of the simulation models include the inputs into PYTHAGORAS 

that remain constant throughout the simulation replications while varying factors and 

scenarios.  Incorporated features are weapon and sensor ranges, kill and detection 

probabilities in the scenarios, some agents’ color state values, and movement desires.   

Weapons, firing and kill behaviors in PYTHAGORAS emulate detection and 

identification.  “Weapon range” defines the distance an agent possessing the weapon 

must be from the contact in order to fire the weapon.  This equates to a detection.  Along 

with the range of the weapons, the modeler must specify the probability of kill, Pk, once 

the weapon is used.  For all scenarios in this thesis, the range and the Pk are constant.  The 

maximum range of the weapon is 1 nm.  The reason a USV has to be so close to “kill” is 
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related how kills equate to positive identification.  Once a USV is within 1 nm of the 

contact, it is “hit,” and the identification process is complete.   

The Pk is set at 1.0 for any range, calculated in PYTHAGORAS through 

interpolation.  Since the time step is 72 seconds, randomness is overrun by the time step.  

For simplicity, the Pk and the maximum range of the weapon are constant.  The 

probability of detection, PD, is similar to the Pk but relates to the ability for the sensor to 

detect a contact.  The optical sensor has a maximum range of 4 nm and the radar sensor 

has a maximum range of 16 nm (Rich, 2004), that of a commercial radar system.  Plots in 

Figures 3 and 4 show the explicitly stated probabilities by range for optical sensor and 

radar, respectively.  The probabilities are an abstraction to show the relationship of the 

ability of each USV to detect contacts with these sensors.  The program linearly 

interpolates any range that is not at the stated distances to determine the correct 

probability. 
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Figure 3.   Probability of Detection for Optical Sensor 
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Probability of Detection: Radar Sensor
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Figure 4.   Probability of Detection for Radar Sensor 

 

PYTHAGORAS distinguishes among friendlies, enemies and neutrals using color 

properties.  Each of the three forces has the same distinct color for every scenario. 

Friendlies are blue; the unidentified or alive enemy are solid red; “killed” Enemy are red 

circles; and neutrals start out as brown and turn light blue after being identified.  Color or 

state changes occur only when a USV shoots neutral agents.  A neutral agent’s color 

changes so it is no longer seen as a potential enemy contact, but it is not “killed.”  This 

equates to a circumstance in which contacts, once identified, remain so throughout the 

remainder of the scenario.  This may be optimistic.  These color properties are the same 

for each model to facilitate comparisons. 

Agent movement, as previously mentioned, has values from 0-100.  The value 

entered is a number that relates the particular desire to the other desires.  Obviously, if the 

movement desire is 0, that particular desire has no effect on the agent and is omitted from 

this discussion.  This value is only a relative relationship with respect to the agent it is 

describing.  The values are chosen only so that the relationships among the competing 

movement desires can be shown. The relative importance of the movement is the desired 

relationship in the modeling. 

1.  Scenario-P 
The area of operation for this scenario represents a 10 nm x 10 nm area of ocean 

relative to the HVU.  In PYTHAGORAS, only the USV has weapons to “kill” a contact.  

The HVU, enemy and neutral agents do not posses any weapons.  A kill represents 
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correctly identifying the contact, and the likelihood of obtaining a kill varies with a 

probability of kill (Pk).  Pk is 0.85 in Scenario-P (Quarderer, 2004).  The feedback from 

prototype testing also indicated latency in the data-link back to the HVU, modeled by 

delaying the time that the weapon can kill.   

The sensors in the scenario are optical and radar.  The USV possess both the 

optical and radar sensor, the HVU only has radar, and the enemy and neutral agents only 

possess the optical sensor.  The USV optical sensor represents the EO/IR camera, and has 

perfect vision for 45 degrees directly in front and some peripheral vision, whereas the 

neutral and enemy sensors are merely visual cues.  The probability of detection (Pd) 

decreases as the range to the contact increases.  The maximum range is 2 nm.  The radar 

sensor has 360-degree coverage with a maximum range of 10 nm due to communications. 

As observed for the prototype, the RF range for the USV is a 5 nm radius from the 

host platform.  This limits the USV to travel only in a 5 nm area around the HVU.  The 

movement desires of the USV are, in decreasing order: 

Away from leader (HVU) if closer than 0.5 nm, • 

• 

• 

• 

• 

Toward leader if farther than 5 nm, 

Toward nearest enemy if farther than 0.2 nm, 

Toward next waypoint,  

Maintain last course.  

The prototype scenario does not have a design matrix with replicating runs.  A 

confirmatory run is made in order to verify the scenario is representing the data from 

GET. 

2.  Scenario-W  
Scenario-W implements a scenario where each USV patrols in pre-determined 

tracks, via waypoints.  Tactically, each should simply be able to vigorously patrol sectors 

rather than follow specific paths, but the limitations of PYTHAGORAS did not permit 

this Sector Scenario to be developed.  The waypoints make a “bow-tie” patrolling pattern 

near the HVU.  The total area represented is 40 nm x 40 nm.  As in Scenario-P, the only 

agent that has a weapon is the USV, which “kills,” or in the terms of the thesis accurately 

detects, the enemy.  All three sides, friendly, enemy, and neutral, have an optical sensor 
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that has a 45-degree frontal view with a view probability of 1.0 and a 0.0 view probability 

for any other angle.   

The HVU agent possesses a radar sensor with a range of 16 nm, equivalent to a 

commercial navigational radar system (Rich, 2004) and that information is broadcast to 

each USV.  The broadcast range represents how far the HVU can cue the USV with 

information from its radar.  This property constrains each USV to be within the broadcast 

range in order to receive the information that the HVU is sending.  This is simply a 

modeling aspect that is not intended to represent the actual HVU sends information at 

precise ranges.  The radar has a 360-degree view with a view probability of 1.0.   

Speed in the simulation model is a function of the pixel representation as well as 

the length of the time step.  The speed among like USV agents is set to a tolerance factor 

of three. The tolerance factor is input by the modeler and indicates the range of the 

property, such as speed, that the agents in the class can possess.  For instance, if enemy 

speed is 10 pixels/time-step, a tolerance factor of three provides for the agents can having 

speeds from 7 to 13 knots.  This number allows speed to vary slightly during 

experimentation. Since the range of speed is from 1 – 20 units, a factor of three can be 

used consistently over the varied speeds.  Each USV starts at the HVU, the center of the 

modeling area, and travels toward the waypoints.  Since speeds are not constant, the 

scenario represents average speeds.   

The constant radius modeled for each USV is 20 nm.  The range is just over the 

visual horizon and past the 16 nm radar range.  Experimenting with this range shows 

whether it is desirable to stretch the limits beyond the line of sight.  This is one of the 

factors that varies throughout the runs of the simulation.  The movement desires of each 

USV are, in decreasing order of desire: 

Toward the next waypoint within a distance of 1.6 nm, • 

• 

• 

• 

• 

Toward the nearest enemy if farther than 0.4 nm, 

Away from the closest unit member if closer than 1 nm, 

Away from the HVU if closer than 1 nm, and  

Toward the HVU if farther than 1 nm.  
15 



The  first two desires are given equal weighting and the movement method is used “top 

two desires”, which means that the agent only looks at the two highest desire values to 

execute the next movement.  If conditions of the highest values are not met, the agent 

looks at the next highest desire value, allowing the USV to seek for enemies as well as 

proceed to the next waypoint.  The third desire prevents the USVs from clustering 

together and going after the same contacts.  Forcing the USVs apart makes them operate 

separately.  The fourth desire is to “jump start” the simulation.  All of the USV would 

otherwise start at the center and stay put without this movement desire.  The last is a very 

low desire level and if all of the other conditions cannot be met, the USVs go back to the 

HVU. 

3. Scenario-I 

The Interceptor scenario is a representation of USV operating in a random 

manner, whereby each conducts cooperative searches for contacts within their optical 

scope or that of the HVU radar.  The search area contains neutral contacts and enemy 

contacts, as well as the HVU.  The USVs deploy from the HVU at the start of the 

simulation and immediately start searching for the nearest enemy.  When the USV is 

within the stated range of identifying the contact, the contact is removed from the 

possible contacts that can be explored.  In order for the USV agents in PYTHAGORAS 

to desire investigating non-threatening contacts, the neutral contact is designed as an 

enemy.  As in tactical operations, the USV(s) would attempt to identify not only the 

enemies, but any unknown contact that is within the chosen zone of the HVU. 

The USV agents in the scenario possess optical and radar sensors.  The optical 

sensor has a perfect view 45-degree in front of the agent with no peripheral vision.  The 

HVU possesses the radar sensor, which has a 360-degree view and a range of 16 nm.  

The neutral and enemy agents only possess the optical sensor.  In descending order, the 

movement desires of each USV in the Interceptor scenario are: 

Toward the nearest enemy as seen in the scenario (this sends the USV after 

the contacts),  

• 

• Away from the closest unit member (this prevents the USV from staying in a 

cluster), 
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Away from the leader (HVU) if closer than one nm (this jump-starts the 

search), and  

• 

• 

• 

• 

Toward the leader (HVU) if farther than one nm (if no other movement 

desires exist, this sends the USV back to the HVU). 

Once again the movement method uses the “top two desires” of the values input into the 

simulation model.  This is an ISR scenario and it follows the descriptions and 

assumptions of Scenario-W for the movement desires for the neutral and enemy contacts 

in the scenario. The verification of Scenario-I is Random Search Theory applied in 

Chapter IV. 

4. Scenario-FP 
The Force Protection scenario is designed to determine the benefits of the USV 

when there is an imminent threat to the HVU.  As in the previous scenarios, each USV 

searches for the nearest contact in order to identify whether or not it is a threat.  The 

weapons and sensors that the USV and the other contacts possess are the same as in the 

ISR scenarios.  The difference in this scenario from the ISR scenarios is how the enemies 

are defined.  The purpose is to see the effect of each USV when some of the enemy 

contacts are directly targeting the HVU.  The neutral and enemy contacts in Scenario-FP 

are still implemented as in the ISR scenarios; however there is an additional type of 

enemy in the FP situation.  The additional enemy is threatening and goes toward the 

HVU to attack.  The actual attack on the HVU is not modeled, as the focus of this study 

is on USV activity.  Modeling the attack and how the USV(s) respond could be a topic 

for future research.   

The movement desires of the threatening enemy are to make it to the HVU 

without being detected by the USVs. They are hostile toward the HVU and the USVs, 

and do not cluster tightly but to join together outside a range of four nm.  The 

PYTHAGORAS desires are listed in descending order of desire: 

Toward next waypoint (HVU),  

Toward nearest enemy (USV(s)),  

• Away from nearest enemy if farther than two nm, 
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• Away from Closest unit Member if closer than one nm, 

Toward closest unit member if farther than four nm, • 

• 

• 

Maintain last course,  

Select Random Direction.  

To affect tactically challenging threat profiles, the simulation model makes use of a 

“highest desire” movement method among these options.  The first two each have the 

highest desire, the third, slightly less, and the fourth, fifth, and sixth are all equal.  The 

last two are carried over from the enemy characteristics in the ISR scenarios and the non-

threatening enemies in the FP scenario.  USV movement desire is exactly the same as for 

the Interceptor scenario.   

 

D. METHODOLOGY 
No experiment is complete unless there is output of value for analysis.  The value 

is a function of the factors and the factor levels explored in the experiment (Chapter III) 

as well as the measures of effectiveness (MOEs) that are collected.  The following MOEs 

appear to be most relevant, even though PYTHAGORAS is able to implement a variety 

of MOEs.  The ISR scenarios explore the proportion of enemies detected.  The FP 

scenario also examines the proportion of enemies detected.  Since there are two types of 

enemies, there are two distinct MOEs for each type of enemy—the overall proportion of 

enemies detected and the proportion of threatening enemies that are detected.  The final 

MOE to be evaluated is the number of threatening enemies that reach the HVU.  Each 

MOE is evaluated individually against the factors for the respective scenario, and 

analyzed using regression methods.  The results yield significant factors and interactions 

for each particular MOE.  Further validation of the important factors confirms the results. 

1. MOEs Implemented  

a. Proportion of Enemy Detections  
The numbers of each type of agent are known, since they are inputs to 

PYTHAGORAS at the beginning of each run.  The output from PYTHAGORAS returns 

the number of detected enemies at the end of each run, yielding a proportion of enemies 

detected.  The proportion of detections is essential to the ISR scenarios as well as the FP 
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scenarios.  For example, it is tactically important to know conditions in which sending 

out a USV would enable detection of only a small proportion of enemies.  It is a waste of 

an asset if the proportion of detections is so low as not to enhance the mission.  It is 

tactically important to specify the condition under which the HVU deploys the USV to 

interdict contacts.  This study helps define those conditions.  It is anticipated that as the 

number of USVs increase, the proportion of detections will initially increases but 

eventually levels off.  

 Force Protection is most critical at close ranges to the HVU.   Knowledge 

of the probability of detection, as well as the current number of detections, could be used 

to develop an estimate of the proportion of unidentified enemies in the area.  This type of 

information is of great value to tactical decision makers. 

b. Proportion of Detections against Threatening Enemies 
This MOE is calculated similarly to MOE (a), the proportion of detections 

of enemies that are threatening out of the total number of enemies.  The real world actual 

number of enemies is unknown, therefore we don’t know the probability of detection give 

the number of enemies.  The benefits of this study are that we know the values of the all 

the factors so we can generate estimated probabilities of detection given the number of 

enemies for specific conditions. 

c. Number of Threatening Enemies that Reach the HVU  
Since the threatening enemies are designed to move toward the HVU, this 

study must show how many of these threatening enemies meet their goal.  This MOE 

should give the decision-makers the information necessary to decide what USV options 

to exercise when planning a FP mission.  This MOE is important in determining an 

effective numbers and employment of USVs for Force Protection missions. 
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III. DESIGN OF EXPERIMENTS 

A. LATIN HYPERCUBE DESIGN  
Correct design of experiments enables efficient analysis of many factors at 

multiple levels.  A design point represents the combination of one particular level for 

each factor in the simulation model.  In general, choosing the values for the design points 

can be challenging, particularly when the number of factors is large, such as in this study. 

For example, observing 11 factors at three discrete levels would require 311, or 177,147 

design points, to be run at least ten times each for randomness, for a total of 

approximately 1.8 million runs.  Observing 11 factors at ten discrete levels would require 

1011 or 100 billion design points to be run at least 10 times each for randomness, for a 

total of one trillion runs.  In contrast, the designs used to explore the three scenarios in 

this thesis require less than 12,000 runs combined, yet allow for up to 33 discrete levels 

for each factor. 

This base design for the study is a Nearly Orthogonal Latin Hypercubes (NOLH), 

which takes at most eleven factors and varies each factor across up to 33 different levels.  

Using a Microsoft Excel spreadsheet developed by Professor Susan Sanchez (Sanchez, 

2004) based on Cioppa’s (2002) designs, it takes the minimum and maximum value of 

each factor as inputs, and specifies combinations of integer values within the factor 

ranges as outputs.  The resultant matrix is a set of design points that are generated so that 

the columns are virtually orthogonal to each other, defined as a correlation less than 

|0.03|, simplifying the process of adding and removing terms to a regression model.  

When all factors are independent, an individual factor has the same effect on the response 

variable whether or not other factors are included in the regression model.  

The NOLH design is devised so the design space is covered fully. The factor 

levels are varied to maximize the coverage.  Good space-filling permits complex analyses 

to be computed (Sanchez and Lucas, 2002).  This study appends together four NOLH 

matrices, in order to get better space-filling and sufficiently reduced correlation.  The 

middle run for each of the four matrices is the exact same design point (a function of the 

calculations to generate the values in the columns), so there are a total of 129 distinct 
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design points run 30 times each for a total of 3,870 runs for each scenario.  This provides 

structure so that the data can be compressed for each design point and for analysis as 129 

independent responses. 

The runs were conducted on a cluster of machines at the MITRE organization in 

Woodbridge, VA.  Cleaning the data for analysis exposed errors in the compilation of the 

data files.  Omitting these four associated design points yielded a correlation matrix 

producing a maximum correlation of |0.06|.  Even though this is not below |0.03|, it is still 

sufficiently low for us to consider the factors nearly orthogonal.  These replications help 

determine which of the varied factors are important for specific MOEs. Since the 

composition of the ISR and FP scenarios are slightly different, the design matrices are not 

exactly the same.  However, each look at parallel factors.  The design matrices are 

explained in detail in the following two sections. 

1. Explanation of Variable Factors for ISR Scenarios  
Ten factors are varied in PYTHAGORAS units for the ISR scenario.  The factors 

are shown in Table 1, along with their minimum and maximum tactical values for the 

simulation experiments.  In the remainder of this section, each factor is also explained in 

its PYTHAGORAS terms. 

Table 1. ISR Scenarios NOLH Design, 10 Factors, 33 Design Points 

Factor Minimum Value Maximum Value
USV Speed 2 knots 40 knots

Neutral Speed 2 knots 40 knots
Enemy  Speed 2 knots 40 knots

Sea State 1 3
Number of USV(s) 1 24
Number of Contacts 1 250

% Enemies 10% 25%
USV(s) Permitted Range from HVU 1 nm 20 nm

Camera Range 1 nm 10 nm
Length of Simulation 30 500  

The speed of each type of agent ranges from 1-20 pixels per time step, which 

converts to 2-40 knots.  Each time step is 72 seconds long.  The maximum speed of each 

USV is based on that of the RHIB, the base structure for the USV.  The maximum speed 
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of a RHIB is 40 knots (Navy Fact File, 2004).  The smallest time step feasible to permit 

the conversion to 40 knots in PYTHAGORAS is 72 seconds.  Two knots is the minimum 

at which each time step is not so long that resolution of the scenario is lost.  If the range 

were one knot, the time step would need to be twice as long, significantly decreasing the 

fidelity of the scenario since detections can take place in less than two minutes.  Both the 

neutral and enemy contacts are given the same range for the respective speeds.   

The next factor varied is the sea state, accomplished in PYTHAGORAS by the 

changing the movement factor of the terrain.  The movement factor is a number between 

zero and one.  In order to implement the NOLH design, this factor is scaled by 10 to 

conform to spreadsheet design points given in integer value.  The range of the factor in 

PYTHAGORAS is 0.5-1.0 (5-10 in the design matrix).  The actual range of sea states is 

states 1-3.  Above sea state three, a RHIB is highly unstable, its sensors are rendered less 

effective, and the hostile and neutral agents suffer similarly in their ability to maneuver.  

Looking at operations in the heightened sea states is an opportunity for further research.  

An overview of sea state classification and translation to PYTHAGORAS appears in 

Table 2.   

Table 2. Sea State Definition for Pythagoras (from Definition of Sea State) 
Pythagoras 
Movement 

Factor 
Sea State 

Wave 
Height 

(Ft) 
0.9-1.0 1 0.5-1 
0.7-0.8 2 1.5-2.5 
0.5-0.6 3 3-4 

 

In the scenario, an HVU is assigned a Squadron of USVs, which consists of six 

detachments of four USVs each, totaling 24 USVs per HVU (Ricci, 2002).  At one 

extreme, it is desired to know the outcome when USVs are outnumbered by contacts, and 

in fact more enemy contacts than USVs.  Otherwise, the HVU would be most likely to be 

able to handle the few contacts.  To explore this broad range of alternatives, the number 

of contacts varies from 1 to 250, where the enemy agents make up 10-25% of all 

potential contacts.  These two factors determine how many neutral and enemy agents are 

in the scenario. 
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The optical sensor has a maximum range which defines how far away the agent 

possessing the sensor can detect a contact.  By changing the maximum range of the 

optical sensor, the time available for the PYTHAGORAS agent to “kill” the contact 

varies as well; it varies over the interval 1-10 nm, or 25-250 pixels.  As the sensor range 

increases, the number of detections should increase as well.   

The permitted range of the USVs from the HVU varies to assess how close the 

USV should be stationed with respect to the HVU.  The range of the camera sensor varies 

throughout the simulation.  This range determines how close the USV must be to the 

contact in order to get an accurate identification of the contact at hand.  The sensor range 

varies from 1nm to 20nm.   

The final design factor under consideration is the time on station, which 

determines availability for each USV to complete the mission.  The projected time on 

station for the USV prototype is six hours.  Utilizing the 72 second time step, the length 

of the simulation runs for 36 minutes up to 10 hours.  If the analysis reveals a high 

correlation between the MOEs and the endurance, it would be beneficial to be able to 

lengthen the time a USV can remain on station. 

2. Explanation of Variable Factors for FP Scenario 
All of the factors varied in the ISR scenarios are also implemented in the FP 

scenario with the exception of time on station.  Scenario-FP has an extra factor, 

threatening enemies, that the ISR scenarios do not.  This necessitates an extra speed 

factor for the design as well as and additional MOE (percentage of threatening enemies 

out of the total number of enemies) for the analysis.  For the purpose of preserving the 

NOLH matrix, the time on station factor is removed and kept constant at 10 hours for 

every run, and the threatening enemy speed and percentage of enemies that are 

threatening factors are added to obtain the FP design matrix.  The speed factor remains 

between 2-40 knots as it is for all other agents in the ISR scenarios, and the same 

justification applies.  The overall number of enemies, threatening and non-threatening, is 

10-25% of the total number of contacts, which varies from 1 to 500.  The threat 

constitutes between 10-90% of the total number of enemies so that involving both few 

and many threatening contacts are examined.  The factors of the optical sensor range and 

the distance permitted from the HVU are the same as for the ISR scenarios.  These eleven 
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factors and the real world ranges of each factor for the Force Protection scenario are 

shown in Table 3. 

 

Table 3. FP Scenario NOLH Design, 11 Factors, 33 Design Points 
Factor Minimum Value Maximum Value

USV(s) speed 2 knots 40 knots
Neutral Speed 2 knots 40 knots

Threatening Enemy  Speed 2 knots 40 knots
Non-threatening Enemy Speed 2 knots 40 knots

Sea State 1 3
Number of USV(s) 1 24
Number of Contacts 1 500

% Enemies 10% 25%
USV(s) Permitted Range from HVU 1 nm 20 nm

Camera Range 1 nm 10 nm
% Hostile Enemies 0% 100%  

 
 

B. TACTICAL INTERPRETATION 

As mentioned in the previous section, the research and experimentation is done so 

that it can be applied to the needs of the Fleet.  To accomplish this, factors that can be 

controlled by the HVU, and the noise factors that cannot, are varied in the simulation 

experiments.  Currently, the prototype for the USV has limitations, such as the range it 

can travel from the HVU and the sensor ranges.  If the analysis in the next section proves 

a need for the USV to hold properties that are beyond the current capabilities, these 

capabilities should be implemented to achieve optimal functionality.   

There are also factors such as the number of contacts and their speeds, and the sea 

state in the 1600 sq-nm area of ocean looked at in the scope of this thesis that are 

uncontrollable by the HVU.  The controllable factors are the number of USVs and the 

speed of the USVs.  The ultimate desire is to be able to observe an approximate number 

of contacts in the tactical scenario at a given sea state and know how many USVs should 

be employed to investigate.  Ideally, the results in this thesis will provide useful 

information to the Fleet for tactical operations.  
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IV. EXPERIMENTATION RESULTS, COMPARISONS, AND 
INSIGHTS 

A. ANALYSIS APPROACH 
There are several tools available to analyze simulation output data.  Multiple 

linear regression is the first analytical tool.  If the regression is not sufficient, other means 

may be employed for classifying the factors in terms of the MOE.  Using regression, we 

look at the factors varied in the Design of Experiments (DOE), the predictor (regressor) 

variables, and each of the MOE’s as a response to the predictors.  The process seeks to 

identify factors, quadratic effects, and interactions that are significant in explaining 

variation in the MOEs.   

For this study, the overall regression model is considered statistically significant if 

the p-value is less than 0.05.  Individual terms in the model (main effects for a factor, 

quadratic effects, or interaction effects) are determined to be statistically significant if the 

p-value is less than 0.05.  The smaller the p-value is, the stronger is the evidence that a 

relationship exists between the term(s) and the MOE. 

One metric for determining whether a regression model is a “good” model is the 

R-squared value.  R-squared is the proportion of the variance in the response that is 

explained by the terms included in the model.  A full model includes all of the factors, the 

factors squared, and the two-way factor interactions as explanatory terms.  This involves 

65 terms for the ISR scenarios and 77 terms for Scenario-FP.  When trying to determine 

what terms to include, a high R-squared is desirable, indicating the response can be 

closely predicted; having a minimal number of predictors is also desirable so that the 

actual variance of the response is at a minimum (Montgomery, 2001).  Also, the cost of 

controlling more factors is usually directly related to the number of factors—another 

reason to keep the model simple.   

There are several ways to look at a full model and determine which factors should 

be eliminated.  This can be done by hand or by utilizing software to do the process.  This 

analysis uses JMPTM software, which has a stepwise regression procedure.  The forward 

regression option starts with no predictors in the model and adds a term if it has a small 
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p-value.  Backwards elimination starts with all predictors and sequentially removes them 

if the p-value is large.  The mixed (or stepwise) option does both backwards elimination 

and forward selection simultaneously.  Usually, entering and exiting criteria are set to 

avoid cycling so it is harder to remove a predictor after it has been added to the model 

(Montgomery, 2001).  We use the mixed option of the stepwise regression offered by the 

software to do the analyses.  This yields models with fewer terms than the associated full 

models while still achieving high R-squared values.   

The model suggested by the stepwise regression procedure can be modified 

manually, using inference tests of the significance of regression and the significance of 

the individual coefficients.  Further details are available in any statistical text (e.g., 

Montgomery, 2001), but we summarize the tests here.  The significance of regression test 

has the following null and alternative hypotheses: 
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where k is the last term in the model and j is any term from 1 to k.  A rejection of  

indicates that there is at least one predictor that has a significant contribution.  The 

method for determining a rejection is if the p-value is less than a significance level α, 

usually α=0.05.  This p-value is found in the ANOVA table summarizing the model.   
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The other type of test for significance is on the individual coefficients in the 

regression.  The null and alternative hypotheses for this test are below:  
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where jβ  is the coefficient for a specific potential predictor.   A rejection of the null 

hypothesis for this test means the associated term should remain in the model; if there is 

sufficient evidence to reject the null hypothesis, then the term is be removed.  The 

method for determining whether or not to reject the null hypotheses also involves a p-

value, reflected in the Prob<|t| column in the table of coefficients for the model.  Again, a 

typical criterion is to reject the null hypothesis if the p-value is less than 0.05.   
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 If linear regression is not significant or does not provide a good fit, partitioning or 

regression trees can help determine important factors.  This process explores which 

factors can be split, and at which factor level the split should occur.  A candidate factor is 

one that has the largest sum of squares value.  The output of the regression trees includes 

the mean and standard deviation of the response variable, given the conditions at the 

levels where the factors split. 

 The goals of the both types of analyses include determining relatively simple 

models that relate the MOEs to their significant factors.  This enables the analyst to make 

predictions of the MOE at particular combinations of factor values, and to relate the 

factors to the MOE for decision makers. 

 

B. ANALYSES 

1. Scenario-W Analysis 

Scenario-W analysis begins by constructing a formulation that considered only 

the terms associated with the factors controllable by the HVU.  Stepwise regression 

assists in determining which of these controllable factors are significant.  This function is 

in JMPTM, evaluating all potential terms at the significance levels for exiting and entering 

the model at 0.10 and 0.05, respectively.  Initially, we consider a model that contains only 

terms involving the factors that are controllable by the HVU to see if situational 

awareness is required to accurately predict the MOE.  These terms are:  speed of the 

USV, number of USVs, permissive range from the HVU (also known as the combat 

radius), camera range, and the simulation run-time, representing the available time on 

station.  Two-way interactions and quadratic effects are also included.  Stepwise 

regression on these terms returns a model that explains 64.06% of the variance.  The 

main effects included are the number and speed of the USV(s), the camera range and the 

simulation time.  No interaction terms are included, but the quadratic effects of the 

number of USVs and the camera range are significant.  The regression is significant since 

the p-value is less than 0.001 for the null hypothesis.  As depicted in Figure 5, the actual 

versus predicted values do not have a tight cohesion, or a strong fit, for these data points.  

An indicator for seeking a better model is the residual plot, Figure 6, which shows that 

the variance is not constant.  The variance seems to increase up to predictions of 0.4, then 
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become stable.  However, there is a wide gap for the residuals at predictions between 0.7 

and 0.8.  With less than two-thirds of the MOE variation explained by this model, a better 

explanation may be achievable.  While the initial model may be of some use to decision 

makers, adding terms involving uncontrollable factors may improve the fit and residual 

plots and provide additional insight. 
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Figure 5.   Actual vs. Predicted Responses for Significant Controllable                                                 

Factors Model (Scenario-W) 
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Figure 6.   Residual vs. Predicted Responses for Significant Controllable Factors           

Model (Scenario-W) 
 

A new model is generated after including all 65 possible terms:  the main effects, 

two-way interactions and quadratic effects.  Figure 7 shows the actual simulation values 

versus the predicted values for this “full” model.  The data points are clustered much 

more tightly, which shows a good fit of the data to the model.  The regression is 

significant and the explanation of the variance has increased to 93.71% from 64.06%.  

The residual plot, shown in Figure 8, also shows that there are no model defects.   
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Figure 7.   Actual vs. Predicted Responses for Full Model (Scenario-W) 
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Figure 8.   Residual vs. Predicted Responses for Full Model (Scenario-W) 

 

Even though having 93.71% of the variance explained by these 65 terms is great, 

a decision-maker will find it much easier to examine a model with fewer terms.  Using 

the stepwise function as before, the stepped model has only a slightly lower R-squared 

value (92.22%) but the number of terms drops to 22—a considerable improvement from 

the initial 65.  Figure 9 shows the actual versus predicted values.  Compared to Figure 7, 

the stepped model is still a good fit.  Looking at the residual plot (Figure 10), there still 

does not seem to be a severe model defect since the residual plot is approximately a 

horizontal band and there are no outliers in the data. 
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Figure 9.   Actual vs. Predicted Responses for Stepped Model (Scenario-W) 
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Figure 10.   Residual vs. Predicted Responses for Stepped Model (Scenario-W) 

 
The criteria we used for the stepwise procedure made it more difficult for terms to 

leave the model once they have entered, so it may be possible to remove some terms 

manually without greatly reducing the amount of explained variance.   We removed terms 

where the test on individual regression coefficients is not rejected (p-value greater than 

0.05).  This third (and final) model uses only 11 terms, yet explains 88.99% of the 

variance of the proportion of enemies that are accurately identified.  The regression is 

still significant.  Figure 11 shows the actual vs. predicted plot for this final model for the 

Waypoint scenario.  The residual plot in Figure 12 shows that the model still has no 

major defects.  A few points (circled in Figure 12), were looked at as possible outliers, 

but all were within three standard deviations of the predicted value.   
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Figure 11.   Actual vs. Predicted Responses for Final Model (Scenario-W) 
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Figure 12.   

Table 4. 

Residual vs. Predicted Responses for Final Model (Scenario-W) 
 

The terms in the final model are shown in the Table 4 below, along with the 

coefficients, their standard errors, and their p-values.   All of the significant controllable 

factors from the initial model are in the final model. 

 

Coefficients in the Final Model (Scenario-W) 
Term Coefficient Std Error P-value
Intercept -0.108938 0.03293658 0.0013
Speed: USV(s) (knots) 0.00214313 0.0005882 0.0004
Speed: Enemy (knots) 0.00853616 0.00059336 0.0000
Number USV(s) 0.00988934 0.00096962 0.0000
Camera Range (nm) 0.0255352 0.00247689 0.0000
Simulation Length (minutes) 0.00070397 0.00003916 0.0000
(Speed: USV(s) -21.104)*(Number USV(s)-12.528) 0.00022515 0.0000923 0.0163
(Speed: Enemy -20.832)*(Simulation Length -317.338) 0.00001972 0.00000361 0.0000
(Speed: USV(s) -21.104)*(Speed: USV(s) -21.104) -0.0001938 0.00006154 0.0021
(Number USV(s)-12.528)*(Number USV(s)-12.528) -0.0009239 0.00017693 0.0000
(Camera Range -5.46848)*(Camera Range -5.46848) -0.0068333 0.00108399 0.0000
(Simulation Length -317.338)*(Simulation Length -317.338) -0.0000014 2.96E-07 0.0000  
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Table 4 shows that there are two significant interactions in the model.  Taking a 

look at each interaction through either the contour plots or the prediction profiler reveals 

how the combination of the two factors affects the proportion of the enemies detected in 

the simulation.  Figure 13 shows a matrix of the interactions included in the final model.  

Each sub-graph shows the impact on the predicted MOE of changing the row factor from 

its lowest to highest level for two cases:  when the column factor is fixed at its lowest 

value, and when the column factor is fixed at its highest value.  A quadratic effect in the 

model is shown by a curved line.  When there are no interactions between the row and 

column factors the lines are dashed instead of being solid and always parallel.  There are 

two lines because changing the value of one of the factors from its low value to its high 

value changes the MOE.  
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Figure 13.   Matrix of Interaction Terms in Final Model (Scenario-W) 

 

The first interaction to consider is that between USV speed and the number of 

USVs.  The interaction matrix shows that the mean proportion of enemies detected 

increases as the number of USV increases when the enemy’s speed is high.  Figure 14 

shows a contour plot of these two factors, which verifies the reaction of the response 

variable.  The proportion of enemies that are identified increases as the speed of the 
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enemy increases and as the number of USVs increases.  Further clarification on the 

tactical meaning is processed through the prediction profiler in JMPTM.   
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Figure 14.   Contour Plot of USV Speed vs. the Number of USVs (Scenario-W) 

 

JMPTM also has a Prediction Profiler that (like the Interaction Matrix graph) 

enables review of the predicted regression model instead of the original simulation output 

data.  The vertical dotted lines correspond to the levels of the five factors.  The horizontal 

dotted line corresponds to the predicted proportion of enemies killed.  The solid line for a 

particular sub-graph shows the impact of changing that factor from its lowest to its 

highest level, while the other factors are held constant at the levels by the dashed vertical 

lines and numerical value below the plot. Figure 15 shows the base case in the profiler 

and, based on the regression model, generates a 95% confidence interval (CI) of the mean 

proportion of enemy agents detected.  Curved lines in the profiler display the quadratic 

effects of the factors that appear as squared terms in the model.   

The profiler also displays the relationship between each factor and the predicted 

value of the MOE.  If the term returns a flat line, this denotes a strictly linear relationship 

and the term only appears as a linear effect in the model.  If the profiler shows curvature, 

then the term is modeled with a quadratic effect.  Some quadratic terms in this model 

have diminishing return, and others (in fact) show diminishing performance.  For 

instance, in the Waypoint scenario, the value where the number of USVs does not 
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increase the proportion of detections is at 17.7 in the base case.  The interaction between 

the USV speed and the number of USVs was already explored through the prediction 

profiler.   

When increasing both the USV speed and number of USVs until the MOE begins 

to decrease, while keeping the other factors at their base case levels (Figure 16), the point 

estimate of the prediction increases from 0.5652 to 0.6125 and the interval remains 

approximately the same width.  Decreasing the USV speed to its minimum value and 

keeping the other variables constant (Figure 17) reduces the proportion of detections to 

0.4599, but the interval widens.  Figure 17 also shows that no more than 15.5 USVs are 

required when they are moving at slower speeds.  When the USVs operate at maximum 

speed, at most 20.3 USVs are required.  Overall, this interaction suggests that 18.6, 

rounded up to the next nearest whole number, 19, USVs are required when the USV 

speed is at its optimal value of 26.7 knots.  
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Figure 15.   Base Case of Final Model, 95% CI (0.5320,0.5984) (Scenario-W) 
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Figure 16.   USV Speed and Number of USVs Interaction:  Diminishing                        

Returns (Scenario-W) 
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Figure 17.   USV Speed and Number of USVs Interaction:  Low USV Speed             
(Scenario-W) 

 

The enemy’s speed, in conjunction with the length of the simulation, has a 

different effect on the proportion of detections made by the USVs.  Both factors must be 

near the upper boundary of the range for the proportion to be greater than 0.750.  This 

can be seen by looking at the matrix of interactions in Figure 18.  The matrix shows a 

divergence in the proportion of detections when either factor is at its maximum value.  

The contour plot in Figure 18 also shows this increasing relationship.  Utilizing the 

profiler (Figure 19), the analysis of the enemy speed and USV endurance interaction 

shows that when the enemy speed is near its minimum value, the optimal time on station 

for the USV is 437 minutes.  The proportion of detections decreases (slightly) with a 

longer time on station.  The profile plot in Figure 20 shows that when the speed of the 

enemy is near its maximum, a longer time on station increases the proportion of 

detections, although there are diminishing returns for the simulation length.  If the 

simulation was permitted to run for longer periods of time, there may be a turning point 

where there is a maximum return before the performance measure would decrease. This 

cannot be said with certainty, as the range of values examined does not demonstrate the 

outcome. 
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Figure 18.   Contour Plot for Enemy Speed vs. Simulation Length (Scenario-W)  
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Figure 19.   Enemy Speed and Simulation Length Interaction: Low Enemy Speed, 
Diminishing Return of Simulation Length (Scenario-W) 

 

M
ea

n(
P

ro
po

rti
on

of
 E

ne
m

ie
s 

K
ill

ed
)

0.98279

-0.094

Speed:
USV(s) (knots)

2 40

Speed: Enemy
(knots)

2 40

Number
USV(s)

1 24

Camera
Range (nm)

1 10

Simulation
Length (minutes)

36 60
0

 
Figure 20.   Enemy Speed and Simulation Length Interaction:  High Enemy Speed,   

Increasing MOE in Simulation Length Range (Scenario-W) 
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There are four quadratic terms in the final regression model.  The profiler depicts 

an individual “optimal” point for each quadratic effect compared to the base case.  

Because they are interactions, the terms cannot be combined to identify global optima.  

For the USV speed, the value is 29.0 knots; more than 18.1 USVs decreases the 

proportion of detections; and, the maximum needed camera range for the base case is 

7.41 nm. Time on station does not span the diminishing return point for the base case.  

Figure 21 shows the prediction profiler with the combination of each of these points and 

the enemy speed at its base case value.  The 95% CI of the proportion of detections is 

(0.7095, 0.7721). 
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Figure 21.   Quadratic Effects Against Base Case (Scenario-W) 
 

2. Scenario-I Analysis 

As with the analysis of the Waypoint scenario, we begin by constructing a model 

which only contains terms associated with factors the HVU can control—including the 

main effects, the two-way interactions, and the quadratic effects.  Figure 22 shows that 

the model has a good fit, that the regression is statistically significant, and that 83.99% of 

the variance is explained by 11 significant factors that are controllable by the HVU.  

However, the residual plot (Figure 23) shows several outliers, so the model with these 

terms is inadequate and requires an alternative.  Since the range of the MOE is bounded, 

all points in the residual plot must fall within a diagonal band. 
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Figure 22.   Actual vs. Predicted Responses for Significant Controllable Factors              

Model (Scenario-I) 
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Figure 23.   Residual vs. Predicted Responses for Significant Controllable Factors           

Model (Scenario-I) 

 

Considering all 65 factors, the full model explains 93.81% of the variance of the 

mean proportion of enemy detections.  The regression is significant and the residual plot 

shows neither non-constant variance nor outliers.  Since 65 terms are too many for 

decision-making purposes, we again use the stepwise regression technique.  The stepped 

model has a good fit (Figure 24) and the residual plot (Figure 25) shows that the model is 

adequate with no major defects.   
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Figure 24.   Actual vs. Predicted Responses for Stepped Model (Scenario-I) 
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Figure 25.   Residual vs. Predicted Responses for Stepped Model (Scenario-I) 

 

Even though the plot shows a good fit, this is a complicated model with 30 

factors.  As in the analysis of the Waypoint scenario, we manually simplified the model 

by removing the terms that had a p-value between 0.05 and 0.10.  The final model has 

only 12 terms and still explains a considerable amount, 85.27%, of the variance of the 

mean proportion of enemies killed.  Figure 26 shows the model has a good fit.  Although 

the residual plot (Figure 27) shows some slight departures from the desired horizontal 

band, its cloud-like shape (with the highest scatter near a prediction of 0.5) is 

characteristic of having a response variable that is a proportion between 0 and 1 

(Montgomery, 2001).   

Another comment on the residual plot of the final model is that there seems to be 

a linear boundary of the points in Figure 27.  This is also a function of the actual response 

variable being restricted to the interval [0,1].  For example, if the model prediction is 0.0 

then the residual must be positive; if the model prediction is 0.1 then the residual cannot 
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be less than -0.1, etc. Fortunately, regression can still be used to identify important terms 

as it is known to be a good, unbiased predictor of the mean response even if the variance 

is not constant.   

A pattern in the residual plot would indicate invalid prediction intervals for 

individual responses.  Since we are only looking at identifying important terms and not 

predicting individual responses, this slight variation in the look of the residual plot can be 

overridden.  The final model only contains one more factor than the model with 

significant controllable factors and increases the amount of variability that is explained 

by 1.28%.  The added term is the quadratic effect of the number of USVs.  Table 5 

displays the coefficients that are included in the final model for Scenario-I. 
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Figure 26.   Actual vs. Predicted Responses for Final Model (Scenario-I) 
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Figure 27.   Residual vs. Predicted Responses for Final Model (Scenario-I) 
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Table 5. Coefficients in the Final Model (Scenario-I) 
Term Coefficient Std Error P-value
Intercept -0.2881184 0.03972294 0.0000
Speed: USV(s) (knots) 0.01227101 0.00074078 0.0000
Number USV(s) 0.00978382 0.0012213 0.0000
Range from HVU (nm) 0.00639677 0.00147981 0.0000
Camera Range (nm) 0.01912085 0.00311894 0.0000
Simulation Length (minutes) 0.00061956 0.00004935 0.0000
(Speed: USV(s) -21.104)*(Camera Range -5.46848) 0.00118821 0.00027425 0.0000
(Speed: USV(s)-21.104)*(Simulation Length -317.338) 0.00001146 0.00000456 0.0135
(Range from HVU-10.3578)*(Simulation Length -317.338) 0.00002573 0.00000911 0.0056
(Camera Range -5.46848)*(Simulation Length -317.338) 0.00004923 0.00002039 0.0174
(Number USV(s) -12.528)*(Number USV(s) -12.528) -0.0006928 0.00022288 0.0024
(Range from HVU -10.3578)*(Range from HVU -10.3578) -0.0008192 3.00E-04 0.0074
(Simulation Length -317.338)*(Simulation Length -317.338) -0.0000014 3.63E-07 0.0002  

The final model includes four interactions terms.  The relationships between the 

crossed terms are shown graphically in Figure 28.  Each interaction is examined more 

closely by using the contour plots and the profiler as in the Waypoint scenario analysis. 
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Figure 28.   Matrix of Interaction Terms in Final Model (Scenario-I) 
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The significant interactions are those between the USV speed and camera range; 

USV speed and USV time on station; combat radius (permissive range from HVU); and 

USV time on station; and camera range and time on station.  From the interaction matrix, 

there is an obvious change in the slope of the response in the first interaction, USV speed 

and camera range.  Figure 29 demonstrates strong positive main effects:  as either factor 

increases, so does the proportion of enemies detected.  When a sensor has a longer range, 

it is logical that it would result in more detections.   

Figure 29 shows that the camera range does not matter at low speeds, but 

increasing the camera range is very beneficial at high speeds.  In reality, this is not to be 

expected, unfortunately.  With increases in speed, platform stability decreases and so do 

sensor ranges.  A moderate increase in the speed has a small impact on the proportion of 

detections at low ranges, but a much larger impact at high ranges.  Figure 29 also shows 

that both factors need to be at the higher ends of their ranges in order for the proportion 

of detections to increase.   

There is a minimum speed at which the USVs should travel, in a range of 10-20 

knots.  If the speed is too slow, then not even an increase in the camera range would raise 

the proportion of detections.  This makes tactical sense. 
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Figure 29.   Contour Plot of USV Speed vs. Camera Range (Scenario-I) 

 

The interaction between the USV speed and the simulation length does not show 

as drastic changes in the slopes as in Figure 28, but Figure 30 does show how the 

increasing relationship between the two factors jointly increases the proportion of 
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enemies detected in the scenario.  This relationship is intuitive since the longer the time 

available for a sensor to seek contacts, the greater the number of detections that can 

occur.   
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Figure 30.   Contour Plot of USV Speed vs. Simulation Length (Scenario-I) 
 

Figure 31 displays the relationship of the proportion of detected enemy agents 

with the interaction of the camera speed and the simulation length.  This relationship is 

similar to the previous two.  It takes high levels of both factors to achieve a high 

proportion of detections.  The contour plot shows that long times on station with a short 

camera ranges result in lower proportions of detections than short endurances and high 

camera ranges.  The USVs should be deployed for longer time periods only if the camera 

range can be increased as well.  If the time on station is longer with a short camera range, 

the proportion of detections is less than if a USV with the same camera range were 

deployed for a short period of time. 
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Figure 31.   Contour Plot of Camera Range vs. Simulation Length (Scenario-I) 

 

The last interaction term in the final model of the Interceptor scenario is the 

combination of USV combat radius and the time on station.  The contour plot (Figure 32) 

shows some interesting effects of the relation of the factors.  As the USVs are permitted 

to range further from the HVU, the proportion of detections increases, which is intuitive.  

As the area that is being searched increases, the USVs are able to approach more 

contacts, providing a larger proportion of enemies that are attainable.  When the 

simulation length and the range are both at their maximum values, the proportion of 

detections is greater than 0.750, which is good.  What is interesting is that the proportion 

of detections does not seem to depend on the simulation length when the range is at its 

lower limit but it does when the range is at its upper limit.   

The prediction profiler (Figure 33) shows that a short time on station requires a 

combat radius from the HVU of 9.5 nm.  With longer time on station, the combat radius 

at the point of maximum return is 18.7 nm.  This indicates an increasing relationship 

between the MOE and this interaction. A combat radius of less than 2.0 nm, however, 

returns a maximum for time on station at 455 minutes (Figure 34). 

 

46 



0

100

200

300

400

500

600

S
im

ul
at

io
n 

Le
ng

th
 (m

in
ut

es
)

0 5 10 15 20

Range from HVU (nm)

Mean(Proportion Enemies Killed)

<= 0.250
<= 0.375
<= 0.500
<= 0.625
<= 0.750
> 0.750

 
Figure 32.   Contour Plot of Permissive Range vs. Simulation Length (Scenario-I) 
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Figure 33.   Base Case Final Model 95% CI (0.4226, 0.4948) (Scenario-I) 
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Figure 34.   Short Time on Station:  Maximum Return of Permissive Range               

(Scenario-I) 
 

47 



M
ea

n(
P

ro
po

rti
on

E
ne

m
ie

s 
K

ill
ed

)

0.96179

-0.1833

Speed:
USV(s) (knots)

2 40

Number
USV(s) 

1 24

Range from
HVU (nm)

1 20

Camera
Range (nm)

1

Simulation
Length (minutes)

36 60
0

 

0.357456
±0.0579

21.104 12.528 1.1 105.46848 455

0.60477
±0.0432

21.104 19.5 15.7 105.46848 535

Figure 35.   Short Permissive Range:  Maximum Return of Time on Station                
(Scenario-I) 

 

Using the prediction profiler to look at the quadratic effects of the number of 

USV, combat radius, and simulation length, the point of maximum return for each of 

these factors can be individually compared to the base case.  Figure 36 demonstrates the 

points with USV speed and camera range kept at the base case values.  The point of 

maximum return occurs with 19.5 USVs, a combat radius of 15.4 nm, and time on station  

of 535 minutes.  The 95% CI for these points and the other factors at their base case is 

(0.5615, 6497). 
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Figure 36.   Quadratic Effects Against Base Case (Scenario-I) 

 
3. Comparison between Scenario-W and Scenario-I 
When looking at the two final regression models for each of the ISR scenarios, 

there are some factors that are significant in both and some that are only significant in 

one model.  Table 6 decomposes the terms in each model. Terms that are horizontally 

48 



aligned and in bold appear in both models.  It is interesting that these terms are all 

controllable.  We briefly compare and contrast the impact of these common terms. 

 

Table 6. Side-by-side Comparison of the Factors in the Waypoint and 
Interceptor Regression Models 

Waypoint Model Interceptor Model
Speed: USV(s) Speed: USV(s)
Speed: Enemy 

Number USV(s) Number USV(s) 
Number of Contacts

USV Range from HVU
Camera Range Camera Range 

Simulation Length Simulation Length
Speed: USV(s)*Number USV(s)

Speed: USV(s)*Camera Range
Speed: USV(s)*Simulation Length

Speed: Enemy*Simulation Length 
Camera Range*Simulation Length

USV Range from HVU*Simulation Length 
Speed: USV(s) *Speed: USV(s)

Number USV(s)*Number USV(s) Number USV(s)*Number USV(s)
USV Range from HVU*USV Range from HVU

Camera Range *Camera Range
Simulation Length*Simulation Length Simulation Length*Simulation Length  

 

We first take a closer look at the factors that are common to both regression 

models.  USV speed appears as a main effect with a positive coefficient in both models, 

although its coefficient in the Waypoint model is much smaller than that in the 

Interceptor model (0.0021 vs. 0.0123).  This suggests that high USV speeds are less 

beneficial when the USVs travel predetermined paths. The negative coefficient for the 

quadratic effect of USV speed in the Waypoint model indicates that increasing the speed 

has diminishing returns, and may eventually be counterproductive, creating holes in 

coverage. Finally, USV speed appears in interactions in both models, although the 

interactions involve different (but controllable) factors. This suggests that any “optimal” 

USV speed would depend on other characteristics of USV deployment. Increasing the 

USV speed increases the proportion of detections experiment for the majority of cases 

examined. 
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The number of USVs appears with a positive main effect and a negative quadratic 

effect in each regression model.  This translates to a diminishing return from increasing 

the number of USVs in each model.  Since there is an interaction with the USV speed in 

Scenario-W, a range of the value to achieve maximum returns for the number of USV is 

between 16 and 19 USVs when the speed is at its minimum and maximum values, 

respectively.  There is no interaction for Scenario-I; the value where the maximum return 

occurs is 20 USVs.  According to our models, having larger numbers of USVs would 

decrease the proportion of detections; though over the factor ranges investigated these 

decreases are minimal (see Figures 17 and 36).   

Finally, the last main effect that occurs in both regression models is the simulation 

length.  The factor also appears as a quadratic term in each of the models.  The maximum 

time on station before the performance of the MOE decreases is near the maximum in the 

range, 600 minutes for the Waypoint model and around 475 minutes in the Interceptor 

model.  The simulation length appears as an interaction with the enemy speed in the 

Waypoint model and with the USV speed, camera range and permissive range in the 

Interceptor model.  The interaction in the Waypoint model is positively related to the 

factors and the MOE.   

When both factors are increased, the MOE increases even more than the main 

effects would suggest.  The range of the simulation length based on the enemy speed is 

420 – 600 minutes.  Ten hours is the upper limit since it is the maximum value of the 

simulation length in this experiment.  For Scenario-I, the best interval for time on station 

should be Scenario-I is 455 – 600 minutes.   The intersection of these two ranges, 455 – 

600 minutes, is the suggested range for the time on station for the USV. 

As for the factors that are different, the enemy’s speed is important in the 

Waypoint model as a main effect and an interaction, but does not appear in any way in 

the analysis of the Interceptor model.  This implies that the knowledge of the enemy is 

more important in the Waypoint scenario than in the Interceptor scenario.  However, not 

knowing the enemy’s speed does not appear to change the operational tactics suggested 

by the Interceptor model.   
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Another difference is the permissive range from the HVU, which appears in 

several terms in the regression model for the Interceptor analysis but does not appear in 

the Waypoint model.  Again, this is logical since the USVs remain on a predetermined 

path, which is constant throughout the experimentation, in the Waypoint scenario.  A 

variation of the Waypoint scenario might be to specify a path for the USVs but allow 

them to leave this path if they detected an enemy, and then return once the enemy was 

killed.  The results for the Interceptor model suggest that the permissible range might be 

important in this type of scenario.  This is a potential area for future research. 

The camera range shows up as a main effect in each regression model but only as 

a quadratic term in the Waypoint regression model.  Again, intuition suggests that if the 

USVs are more restricted in their movement, then the maximum range of their sensor 

plays a more substantial role in the proportion of detections.  The quadratic effect shows 

that after some distance, the performance measure decreases.  Looking at Figure 17, there 

is a maximum return point; that distance is at 7.41 nm.  There is an interaction between 

the camera range and the USV speed in the Interceptor regression model.  For the lowest 

speed, the camera range has little impact on the proportion of detections.  At high speeds, 

a longer camera range increases the proportion of detections.   

Overall, there is a point where too many USVs can cause a decrease in the 

proportion of detections.  USV speed in Scenario-W does not need to be maximized but it 

should be in a scenario that closely represents Scenario-I.  In the Waypoint model, even 

though more enemies were detected using a high sensor range, there is a point that the 

camera range does not need to exceed.  Conversely, the analysis of Scenario-I shows that 

as long as the camera range increases, so will detections.  Finally, time on station in each 

model shows the USV endurance that is needed for each scenario given that the number 

of enemies started with does not change. 

4. Scenario-FP Analysis 
While the Force Protection scenario contains the same MOE as the ISR scenarios, 

with the threat agents included, two additional MOEs are considered.  The two 

accompanying MOEs are the proportion of the threatening enemy agents that are detected 

and the number of the threatening enemy agents that reach the HVU before being 

detected.  The description of the analysis is in that order.   
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Before any further analysis, it is once more necessary to translate 

PYTHAGORAS representations to tactical definitions.  During the process of obtaining 

FP data, it turned out that threat density among contacts ranging from 10-90% was not 

achieved properly, in part because of the restriction of factor levels to integer values.  

Instead, the actual range turns out to be 0-100%.  Overall, a total of 125 design points 

were used with 30 replications at each design point for a total of 3750 simulation runs.  

Because the final design matrix had correlations less than |0.08|, multicollinearity is not a 

concern in the model-building steps.  

a. Proportion of Enemies Detected Analysis 

In an attempt to have a similar approach to analysis as in the previous 

cases, we began by investigating the overall proportion of detections of both types of 

enemy agents, threatening and non-threatening.  An initial look at the regression 

involving only the significant controllable factors, the quadratic terms and the two-way 

interactions is statistically significant (p-value<0.001) but explains only 19.39% of the 

variance in the MOE.  Next, we used stepwise regression where all 77 terms (main 

effects, quadratic effects, and two-way interactions) were potential explanatory variables.  

The resulting model is significant (p-value<0.001), but the 10 terms explain only 31.99% 

of the variance.  Figure 37 clearly shows a deviance of a “good” fit when compared to the 

Actual vs. Predicted plots from previous analyses.  The residual plot (Figure 38) shows a 

weak fit, but does not reveal any patterns or outliers that would suggest ways the model 

could be improved.   
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Figure 37.   Actual vs. Predicted Responses for Stepped Model (Scenario-FP) 
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Figure 38.   Residual vs. Predicted Responses for Stepped Model (Scenario-FP) 

 

Since regression does not seem to predict well for the combination of 

these FP factors and the MOE, next we look at using a nonparametric partitioning 

approach, called regression trees.  This methodology helps identify which factors can be 

split, and at what levels, in order to cluster the data into groups.  Ideally, the points within 

a group will have similar MOE values, but the MOE values will differ widely across 

groups.  Candidate factors have large sum-of-squares values.  The first factor that can be 

split at a distinct level is the percentage of threatening enemies (Figure 39).  This means 

that if the data points are split into two groups, one where the percentage of threatening 

enemies is less than 17 and the other where the percentage is greater than or equal to 17, 

the mean of the proportion of detections would be 0.4409 and 0.7227, respectively.  The 

first split gives an R-squared value of 0.138 (13.8%) with only one term. 
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Figure 39.   First Split of Regression Tree in the Overall Proportion of Enemy          

Detections (Scenario-FP) 
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Subsequent splits can continue until any stopping criterion is met.  

Multiple splits can be made on the same factor.  After 5 factors are shown to explain the 

performance of the MOE, a total of 5 splits are required, the second and third illustrated 

in Figure 40.  The second split occurs when the percentage of threatening enemies is 

greater than 17 and the new split occurs when the speed of the USV at 28 knots.  A 

higher speed with a higher percentage of threatening enemies gives a mean of 0.7955 out 

of 42 observations.  Likewise, an explanation can be stated for each successive split.    
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Figure 40.   Second and Third Splits in a Regression Tree (Scenario-FP) 

 
 

A summary of the splits appears in the Leaf Table (Table 7). An example 

of how to read the Leaf Table for the highest mean (0.8241 in the last row) follows:  if 

the percentage of threatening enemies is greater than 17% and the USV speed is greater 

than 28 knots and the range from HVU is greater than 3.96 nm, then the mean overall 

proportion of detections of enemy agents is 0.8241.  This leaf contains 37 out of the 125 

total observations.   
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Table 7. Leaf Table:  Overall Proportion of Enemy Contacts Detected 

(Scenario-FP) 
Leaf Mean Count

% Enemies Threatening<17&Range from HVU (nm)>=12.28 0.27492 5
% Enemies Threatening<17&Range from HVU (nm)<12.28 0.55943 7
% Enemies Threatening>=17&Speed: USV(s) 
(knots)<28&Number USV(s) <3 0.36525 5
% Enemies Threatening>=17&Speed: USV(s) 
(knots)<28&Number USV(s) >=3 0.70354 66
% Enemies Threatening>=17&Speed: USV(s) 
(knots)>=28&Range from HVU (nm)<3.96 0.58318 5
% Enemies Threatening>=17&Speed: USV(s) 
(knots)>=28&Range from HVU (nm)>=3.96 0.82416 37  

 

Another summary of the factors used is the Factor Contribution Chart (Figure 41) 

which displays the sum-of-squares value for the main effects of each factor.  Table 7 and 

Figure 41 both summarize the performance of the partitions.  The final R-squared value 

after 5 partitions is 0.358.  Therefore, only looking at 5 main effects, 35.8% of the 

variance can be explained.  The regression tree results are worth much more than the 

regressions that are not significant or regressions where less variance is explained with 5 

additional terms.   
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Figure 41.   Contribution of Each Factor in the Overall Proportion of Enemies              

Regression Tree (Scenario-FP) 
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The most important factor in explaining the variance of the overall 

proportion of enemies is the threat density.  This indicates that knowledge about the 

enemy is more important in the FP scenario than in the Waypoint and Interceptor 

scenarios.  When the combat radius is split, it suggests that large ranges are good when 

there is a low percentage of threatening enemies, while low ranges are good when the 

percentage of threatening enemies is high.  The split on the number of USVs implies that 

having more than three USVs does not seem to help much in this FP scenario for the 

overall proportion of enemies detected. 

b. Proportion of Threatening Enemies Detected Analysis 

We next explore the mean proportion of threatening enemies detected.  As 

Figures 42 shows, the vast majority of design points had perfect detection (MOE = 1.0). 

A preliminary test for Significance of Regression quickly shows that regression is not an 

appropriate tool for modeling this MOE.  Not one of the controllable factors is significant 

and including all 77 factors does not lead to a model that provides a good fit or one that 

can be used for prediction.   
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Figure 42.   Actual vs. Predicted Responses for Full Model (Scenario-FP) 

 

This MOE also requires the use of non-parametric methods for analysis. 

We once again see what insights can be gained by using regression trees.  The process is 

the same as before, and summaries of the analysis are in Table 8 and Figure 44.  Again, 

the first factor that is split is the percentage of enemies that are threatening.  This split 

occurs at a level of 12%, and results in explaining 16.8% of the variance in the MOE.  

The second split is at the number of USV factor.  When there are one or two USVs and 

more than 12% of the enemies are threatening, the proportion of threatening enemy 
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detections is 0.9485.  When more than 12% of the enemy contacts are threatening, having 

three or more USVs results in 0.9995 as the proportion of threatening enemies detected.  

The second split increases the R-squared value to 0.194.  At the third partition, the R-

squared value equals 0.215 and subsequent splits do not tangibly increase the value.   

Table 8. Leaf Table:  Proportion of Threatening Enemies (Scenario-FP) 

Leaf Mean Count
% Enemies Threatening<12 0.8 5
% Enemies Threatening>=12&Number USV(s) <3&Speed: USV(s) 
(knots)<26 0.90524147 6
% Enemies Threatening>=12&Number USV(s) <3&Speed: USV(s) 
(knots)>=26 0.99175926 6
% Enemies Threatening>=12&Number USV(s) >=3 0.99950617 108  

Essentially, the mean proportion of detections decreases when threat 

density is less than 12%.  When more than 12% of the enemies are threatening, the 

proportion of detections depends on the number of USVs and the USV speed.  The 

highest proportion of detections occurs with three or more USVs.  If less than three USVs 

are available, detections are high if the speed of the USVs is greater than or equal to 26 

knots.  If the speed is less than 26 knots, then the mean proportion of detections is lower.  

Clearly, slightly lower detection probabilities may be less of a concern if the total number 

of threatening enemies is small.  This leads to the discussion of the next MOE. 

Factor Contribution
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Figure 43.   Contribution of Each Factor in Proportion of Threatening Enemies        

Regression Tree (Scenario-FP) 
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c. Number of Threatening Enemies that Reach the HVU 

The controllable factors, USV speed, number of USVs, camera range and 

permissive range from HVU, are the first to be looked at for the regression against the 

number of threatening enemies that reach the HVU.  A regression with the main effects 

of the controllable factors, interactions and quadratic effects (not shown) indicated a great 

deal of heteroscedacity.  This suggests that a transformation of the response variable is 

appropriate.  Since the MOE is a count which is characteristic of a Poisson distribution, a 

square-root transformation could make the residual plot of the regression less 

heteroscedastic.  After transforming the MOE, the analysis continues with a stepwise 

procedure of the controllable factors.  This yields a 0.4853 R-squared value with only the 

number of USVs, its quadratic effect, and the camera range in the model.  The actual vs. 

predicted plot (Figure 44) does not show a tight fit even though it passes the test for 

significance of regression.    
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Figure 44.   Actual vs. Predicted Responses for Significant Controllable Factors for       

Number of Threatening Enemies that Reach the HVU (Scenario-FP) 

 

Therefore, the inclusion of all of the factors’ main effects, two-way 

interactions and quadratic effects are regressed on the MOE.  Initially, 95.28% of the 

variance is explained by the 77 factors, but as mentioned previously, a model with many 

fewer terms that can still explain a considerable amount of the variance is a better option 

to present to decision makers.  Using stepwise regression followed by manual removal of 

some marginally significant terms yields the final model that explains 89.72% of the 

variance with only 12 terms.  Figure 45 shows the fit of the final model via the actual 
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value plotted against the predicted values, and Figure 46 plots the residuals against the 

predicted values.  Once again, the line on the lower left of the plot is representative of the 

boundary that the number cannot be lower than zero, since it is a count.  Of greater 

concern is the number of points where the model predicts a negative value, as well as the 

cluster of six points circled in the upper right-hand corner of Figure 46.  These are related 

since the cluster has a strong influence on the regression model.   

Further investigation showed that most of these points were associated 

with a small number of USVs, but after checking the original data we found no reasons 

for eliminating these points.  The model fit could be improved if a dummy variable 

corresponding to USVs less than four were added as an explanatory term, but the 

problem of negative predictions remained.  Because of this, we decided regression trees 

were a more appropriate analysis tool. 
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Figure 45.   Actual vs. Predicted Responses for Final Model (Scenario-FP) 
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Figure 46.   Residual vs. Predicted Responses for Final Model (Scenario-FP) 
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Consistent with the residual plot, the first split in the regression tree occurs 

at four USVs (Figure 47), with an R-squared value of 0.369.  This single factor is 

explaining 36.9% of the variance.  The subsequent splits are shown in the Leaf Table 

(Table 9).  After making five partitions, we find that 68.1% of the variance is explained 

by only four factors.  This is our final model since any more splits increase the R-Squared 

value by less than 1%.  Table 9 shows that if the number of USV is greater than or equal 

to11, the mean number of threatening enemies that reach the HVU is 0.5310.  If the 

number is bound between four and less than 11, and the total number of contacts is less 

than 345 of the possible 500, then the mean number is 1.2372.  Fewer than four USVs 

alone produced a mean of 8.5044, but if the percentage of enemies that are threatening is 

examined, then the mean changes.  If the percentage is less than 40%, then the mean is 

2.5667: if the percentage of threatening enemies is greater than 40%, the mean increases 

greatly to 13.7 threatening enemies who reach the HVU.  Figure 48 is a chart of the 

relative contributions of each factor that is varied throughout the simulation. 

 

Count
Mean
Std Dev

      125
1.9669333
3.9921192

All Rows

Count
Mean
Std Dev

      110
1.0754545
1.6064642

Number USV(s) >=4
Count
Mean
Std Dev

       15
8.5044444
8.3082753

Number USV(s) <4

 
Figure 47.   First Split for Number Threatening Enemies that Reach HVU                 

(Scenario-FP) 
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Table 9. Leaf Table:  Number of Threatening Enemies that Reach the HVU 
(Scenario-FP) 

 
Leaf Mean Count

Number USV(s) >=4&Number USV(s) >=11 0.53102 72
Number USV(s) >=4&Number USV(s) <11&Total Number 
Contacts<345 1.23718 26
Number USV(s) >=4&Number USV(s) <11&Total Number 
Contacts>=345&Speed: Threatening Enemies (knots)<32 2.39444 6
Number USV(s) >=4&Number USV(s) <11&Total Number 
Contacts>=345&Speed: Threatening Enemies (knots)>=32 5.58889 6
Number USV(s) <4&% Enemies Threatening<40 2.56667 7
Number USV(s) <4&% Enemies Threatening>=40 13.7 8  
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Figure 48.   Factor Contribution Chart:  Number of Threatening Enemies that Reach            

the HVU (Scenario-FP) 
 
 

B. VERIFICATION AND VALIDATION 
There are some analytical methods that can be used to check the validity of the 

results the simulation data gives.  The probability of detection in the Waypoint scenario 

can be compared to the analytical probability of detection using the sweep width of the 

sensor.  The Interceptor scenario has each USV independently and individually choosing 

which contact to search.  By looking at the analytical computations, a comparison 

between the simulation results and the Random Search model can confirm or refute the 

simulation results.  The computational formulas are from Naval Operations Analysis 
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(Wagner, et al., 1999). The Waypoint and Interceptor scenarios have much greater 

fidelity and resolution than the random search models.  Even so, comparing the 

simulation results with the analytical computations yields some insight into the 

simulation models’ validity under specific conditions.  

First, consider comparisons for the Waypoint scenario.  Sweep width (w) is the 

area under the static probability of detection (Pd) curve of the sensor.  Since the USVs are 

moving, the new Pd is 

                                                  
s
wPd =                                                (1) 

where s is the space between the patrol routes.  For the Waypoint scenario, s is held 

constant at 100 nm and w changes as the camera range factor varies.  Equation (1) shows 

that when spacing is kept constant, the Pd increases as w increases.  This occurs when the 

sensor range increases in the Waypoint (and other) scenarios, therefore, the Pd increases 

with the sensor range.  Probabilities of detection for a few combinations of sweep width 

(camera range) and the space between patrols are shown in Table 10.   

Table 10. Analytical Values for Scenario-W 

Sweep Width 

(Camera Range) 

 Min Max 

Space between patrols 

(constant at 100 nm) 
0.02 0.155 

A scatter plot of the camera range vs. the mean of simulated values at each range 

is provided in Figure 49.  The plot looks at the mean of the MOE at each level of the 

camera range.  Comparing these means to the analytical values (Table 10), there is 

obviously not much consistency between these values.  Since there are abstractions to the 

scenario, stated in Chapter II, this is one reason that the simulated values do not match 

the analytical values.  However, Pd increases relatively linearly as the range increases, 

which happens in the analytical equation.  A property of the simulated data that is not 

characteristic of the analytical model is that the camera range has a quadratic effect in the 
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regression equation for Scenario-W.  This could be related to the fidelity with which we 

chose to model the patrol patterns. 
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Figure 49.   

Table 11. 

Scatter Plot of Camera Range vs. Mean Proportion of Enemies Detected 
(Scenario-W) 

 

Next, we consider the Interceptor scenario.  The random search formula gives a 

cumulative probability Fd(t), the probability that at least one detection occurs in the time 

t.  The range of the sensor (r), the velocity of the search vehicle (v), the size of the area to 

be searched (A), and the time that the search is being conducted (t) are the factors that 

determine the Fd.  All of these contributors are varied in the simulation models except the 

area, which is kept at a constant 1600 sq-nm.  Using the following equation, 

                                             ,                                     (2) Arvt
d eF /21 −−=

cumulative probabilities can be determined for various factor combinations.  As in the 

analytical case for the Waypoint scenario, we computed cumulative probabilities of 

detection for combinations of the minimum and maximum factor values.  

 Analytical Values for Scenario-I   

Camera Range/Velocity(Speed)  

Fd Min/Min Min/Max Max/Min Max/Max 

Min 0.086 0.834 0.593 1.0 

Ti
m

e 

Max 0.777 1.0 .9999997 1.0 
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These analytical values can be qualitatively compared with contour plots of the 

simulation results.  Only two factors can be looked at simultaneously, so a total of three 

contour plots are examined.  The first is the camera range and speed contour plot (Figure 

50).  The simulation results appear to correspond to the Pd analytical values (looking 

across the values in Table 11), since increasing either factor increases the Pd and 

increasing both raises the proportion of detection even further.  The simulation results 

also conform to the analytical results in that the lower right hand corner (high speed, low 

camera range) tends to yield higher detection probabilities than the upper left-hand corner 

(high camera range, low speed).   
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Figure 50.   Contour Plot of Camera Range and USV Speed (Scenario-I) 
 

The analytical values for Scenario-I show that the Pd increases as the period of 

time spent searching increases.  Figures 51 and 52 both show this relationship between 

the values of the simulation length factor.  Once again, increasing either the camera range 

or the USV speed increases the Pd.  Figure 51 shows that the combination of high 

endurance and short camera range tend to yield higher detection probabilities than the 

low time, high camera range combination.  These conform to the analytic results when 

the speed is low: when the speed is high, both combinations perform well. 
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Figure 51.   Contour Plot of Camera Range vs. Simulation Length (Scenario-I) 
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Figure 52.   Contour Plot of USV Speed vs. Simulation Length (Scenario-I) 

 

The analytical values are optimistic when compared to the simulation values 

because both analytical formulas are designed for static targets, and the targets are 

moving in each of the three scenarios in this thesis.   

 

C. SCENARIO COMPARISONS AND INSIGHTS 

We have examined and compared results for five situations involving three MOEs 

(proportion of enemy detections, proportion of threatening enemies detected, number of 

threatening enemies that reach the HVU) and three scenarios (Waypoint, Interceptor, and 

Force Protection).  Although two different analysis approaches were used, we can 

compare the results across scenarios by looking at the common terms (Table 12).  The 
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shaded cells show where the final models do not contain the specific factor.  One factor is 

significant in each of the five analyses—the number of USVs.  USV speed is significant 

in all analyses except the FP-number that reach HVU.  Camera range and simulation 

length are important in the two regression analyses discussed in the comparison of the 

two models.  Finally, the percentage of threatening enemies is important in each of the FP 

analyses, which were the only analyses to consider this factor.   

The good news for the planners and decision makers is that these are all 

controllable factors except the percentage of threatening enemies.  This means that 

decisions to deploy the USV in one of the three proposed scenarios are subject to neither 

inaccurate information nor assumptions in the face of uncertainty.  This is not to say that 

the models’ other significant factors are trivial, but regardless whether tasking involves 

Interceptor or Force Protection missions, some important information is already known 

about the impact of the number of USVs, the USV speed, and the sensor range.  

Table 12. Comparison of Model Terms 
Model-W Model-I

Proportion 
of Enemies 
Detected

Proportion 
of 

Enemies 
Detected

Overall 
Proportion 
of Enemies 
Detected

Proportion of 
Threatening 

Enemies 
Detected

Number of 
Threatening 
Enemies that 

Reach the HVU
USV(s) speed X X X X
Neutral Speed

Threatening Enemy  Speed X
(Non-threatening) Enemy Speed X

Sea State
Number of USV(s) X X X X X

Number of Contacts X X
% Enemies

USV(s) Permitted Range from HVU X X
Camera Range X X

% Threatening Enemies X X X
Simulation Length X X

Model-FP

 

For comparison purposes, we want to isolate the impact of the explanatory factors 

common to all (or most) of the analyses.  Because the design matrix is nearly orthogonal, 

these contributions are essentially equal to the R-squared values for fitting reduced 

models.  The three terms, number of USVs, USV speed, and camera range explain 

27.20% of the variance in the proportion of detection for the Waypoint scenario and 
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16.14% of the variance for the Interceptor scenario.  This leads us to say that if time 

permits, understanding the current operational scenario and accurately estimating any 

non-controllable factors may help the decision-maker choose appropriate settings for the 

controllable factors. 

As previously mentioned throughout the analyses, a quadratic term with a 

negative coefficient means there are diminishing returns and perhaps even diminishing 

performance.  The thesis varied the number of USVs from 1 to 24 and the largest number 

of USVs that would add to the mission without a decreasing effect is 20 USVs.  This 

number of USVs is achievable for a Carrier Strike Group (CSG) or Expeditionary Strike 

Group (ESG) that is comprised of several ships.   

Although not impossible, procuring a fleet of USVs is not an overnight process.  

A look at what outcome can be predicted by one and four USVs for each MOE would 

likely be more useful in the near future than looking at the big picture.  To accomplish 

this, we set up a “current” case intended to reflect the current position where only one 

USV is available, a “near-term” case where there are four USVs available, and compare 

these to situations where the number of available USVs is not constrained. 

For the Waypoint model, the settings for the other significant factors are USV and 

enemy speeds set at 20.1 knots, the number of contacts at 49 (a plausible number), the 

camera range at eight nautical miles (the range for the current configuration), and the 

time on station at four hours. With one USV the prediction interval is (0.2556, 0.3608), 

with four USVs the interval is (0.3495, 0.4303), and the interval is (0.5291, 0.6005) when 

the number of USVs is set to 17.4 (its apparent “best” value).   Note that the interval is 

widest when there is one USV and narrowest when there are 17.  This means that not 

only does the average detection probability improve as the number of USVs increases, 

but also that the results are slightly more consistent. 

For the Interceptor model, the current case for comparison is to set the speeds to 

20.1 knots, the combat radius is five nautical miles (the current capability), the camera 

range to eight nautical miles (the current configuration), and a time on station of four 

hours.  With one USV the prediction interval is (0.1056, 0.2342), with four USVs the 

prediction interval is (0.1970, 0.2864), and the interval is (0.3705, 0.4511) with 19.9 
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USVs (its apparent “best” value). As before, the width of the interval decreases as the 

number of USVs increases, so adding USVs improves both the mean and the consistency 

of the MOE. 

For regression trees, comparisons can be made using the leaf characteristics, as 

we now illustrate.  In the proportion analyses, the first split occurs at three USVs for both 

MOEs, so the lower partition is used for one USV and the upper partition is used for four 

USVs.  Here, if the threat density among all contacts is less than 17%, there is no 

dependence on the number of USVs and the mean overall proportion of detections is 

0.4409 (computed from Table 7).  If the percentage of threatening enemies is at least 17% 

and the USV speed is greater than 28 knots, there is no dependence on the number of 

USVs and the mean overall proportion of detections is 0.7955 (computed from Table 7).   

Increasing the number of USVs from one to four is beneficial when the percent of 

threatening enemies is at least 17% and the USV Speed is less than 28 knots; in this case, 

the mean overall proportion increases from 0.3652 to 0.7035.   

For the proportion of threatening enemies detected, if there is less than 12%, the 

mean proportion of detections is 0.8000.  When the proportion is greater than or equal to 

12% the dependence on the number of USVs is seen.  If a single USV is available and the 

percentage of threatening enemies is greater than 12%, then the mean is 0.9485 (the 

weighted average of the means in the 2nd and 3rd rows in Table 8).  If four USVs are 

available and the percentage of Threatening Enemies is greater than 12%, then the mean 

of the proportion of detections is 0.9995. 

For the third MOE (the number of threatening enemies that reach the HVU) a split 

occurs at four USVs (Table 9).  Therefore, there is still a separate prediction for one and 

for four USVs.  With one USV, the mean number of threatening enemies that reach the 

HVU is 8.5044.  Having four USVs reduces the number of threatening enemies that reach 

the HVU to 1.075.  If the number is greater than four and less than 11, the number 

increases to 2.1070 threatening enemies that reach the HVU. 
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V. CONCLUSIONS 

The primary goal of this thesis is to come to the aid of the Navy and state whether 

and how the USV should be incorporated into maritime missions.  This thesis cannot 

provide definitive answers, but it does present some useful and interesting initial findings. 

As pointed out previously, simulation is an abstraction from reality, and therefore the 

results should be viewed as insights rather than specific numerical values.  For example, 

reported MOE values should be used in a relative comparison to the other values.  

Regardless, there is no other stochastic simulation of USV tactics known to have been 

conducted before this. 

Three scenarios were constructed and analyzed: a Waypoint scenario and 

Interceptor scenario for intelligence, surveillance and reconnaissance scenarios, along 

with a Force Protection scenario.  A design of experiments (DOE) approach was used to 

extract data from these scenarios for analysis purposes.  The resulting models show the 

relationship between the proportion of detections or number of enemy agents that reach 

the high value unit (HVU) and the factors (10 for ISR scenarios and 11 for the FP 

scenario) that are varied throughout the design.  The breadth of the thesis study is to 

expand the current limitations of the Spartan Scout to check for thresholds, relationships 

and where emphasis should be placed on the actual expansion of the significant 

capabilities. 

The factors that are in the DOE are the speed of each type of agent, the sea state, 

the number of USVs, the total number of contacts and the percentage of contacts that are 

enemies, the range of the camera sensor, the distance that each USV is permitted to travel 

away from the HVU, and the USV time on station.  Some characteristics are kept 

constant throughout the experiment, such as the probability of detections for all sensors 

and the probability of kill for the weapon.  The sensors are also the same for each class of 

agent. Finally, factors that are not included but could be incorporated in future models 

include latency, temperature inversions, currents, and other meteorology and 

oceanography features.   
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There are three types of factors that are varied in the DOE.  First are the 

uncontrollable factors.  These are the speeds of the non-friendly agents, the total number 

of contacts, percentage of contacts that are enemy contacts, and the sea state.  Next are 

the factors that need to be configured into the design and tasking of the USV:  the number 

available to deploy, the camera range, and the range that the USVs are permitted to travel 

away from the HVU.  One last pair of factors is also controllable in the sense that a time-

dependent situation will decide their values.  These factors are the speed of the USV and 

the number to deploy in the given situation. 

 

A.  INSIGHTS FOR USV DESIGN AND DEPLOYMENT 
The uncontrollable factors are beyond the control of friendly forces.  If this group 

turned out to have the highest impact on the MOEs, it would imply that the USVs could 

not be deployed effectively without accurate knowledge or assumptions about the enemy 

position. Only the regression tree analysis of the FP simulation model produced results 

that contained uncontrollable factors as significant terms.   

For the three FP MOEs (the proportion of all enemies detected, proportion of 

threatening enemies detected MOEs, and number of threatening enemies that reach the 

HVU), the only factors that were found significant were the percentage of threatening 

enemies and the threatening enemy speed.  The threatening enemy speed was only found 

significant in the number of threatening enemies that reach the HVU MOE.  Even though 

the level of these factors cannot be controlled, they should be considered when 

determining appropriate levels for the controllable factors mentioned previously. 

The configuration factors should be implemented in USV design.  Analysis shows 

that the optimal number of USVs operationally available per HVU is in the range of 16-

20.  This is a large number to procure per HVU, and may not even be feasible because of 

space limitations aboard the ships and the need for extra platforms to sustain this 

availability.  However, a qualitative summary of the results indicates that a single USV is 

insufficient, that adding USVs improves performance in all three models up to a point, 

but that the performance eventually levels off and may even deteriorate slightly.  The 
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need for a relatively large number of USVs to cover a 1600 sq-nm area may indicate that 

other more complex methods for coordinating USV actions should be considered.   

The other two design factors are the camera range and the tactical range from the 

HVU.  These turn up as interactions in the Interceptor model with the endurance, and the 

camera range interacts with the USV speed.  The main effect of the camera range, in the 

Waypoint and Interceptor models, has a positive coefficient which supports the general 

belief that more capability is better.  However, the quadratic effect shows up in both 

models with a negative coefficient which means that there is a point where the 

performance will decrease.   

Combat radius is only significant in the Interceptor model as a positive main 

effect and a negative quadratic effect.  The lack of significance for the Waypoint model 

suggests that if USVs are solely tasked to follow preplanned mission profiles, the Navy 

should not spend money improving combat radius if it does not improve the operations.  

Experimentations show the same effect for either factor interacting with the endurance 

and leads to the conclusion that increasing the camera range does not require an increase 

in the combat radius.  Neither of these factors was found to have significant interactions 

in the other regression analysis. 

Soon, a decision-maker aboard CSG or ESG will have the ability to choose the 

number of USVs to deploy and the speed at which they operate.  In this case, an 

observation of the situation at hand should be conducted.  The regression models or 

regression tree analyses in Chapter IV can be used to generate point estimates of the 

desired MOEs.  These, in turn, can assist the decision-maker’s assessment of alternatives.   

Interval estimates (such as those illustrated with JMPTM’s profiling tool) can be obtained 

via software after refitting the models to the experimental data (Steele, 2004).    

Since currently only one prototype USV is operable, the probability of detecting 

enemies is not very high for any of the three models.  For the near term, it is interesting to 

know the potential benefit of a slightly larger number of USVs.  When all other factors 

are held at levels typical of the Spartan Scout’s existing configuration, an increase to four 

USVs leads to a substantial improvement in all MOEs. Four was chosen because it was a 

relatively small number but appeared as a split in the regression tree analysis for the 
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Force Protection model. Increasing the number of USVs from one to four also narrowed 

the confidence intervals for the mean responses. 

Overall, one surprising piece of information is that the sea state is not significant 

in the performance of any of the MOEs analyzed.  This could be a function of how sea 

state was modeled: we included influence on USV maneuverability, but not the impact on 

degrading sensor performance.  It is also interesting to note that the enemy speed appears 

in the Waypoint model as a significant main effect and an interaction, yet it was not 

present at all in the final Interceptor model.  

As mentioned with the Interceptor model, an increase in either the camera range 

or the combat radius increases the proportion of detection without having to increase the 

other factor.  Similar results might hold for other types of sensors.  The results suggest 

recommending only increasing the capacity of one of these ranges.  The decision of 

which range should be increased is dependent on the costs, the technological feasibility of 

improving one attribute rather than the other; and which makes logical sense.   

Although sea state was not a significant factor, the actual camera range truly 

depends on the height of the waves.  This relationship was not modeled due to the 

limitations of the PYTHAGORAS software.  If the wave height is greater than the height 

of eye of the camera, or creates sufficient haze, an increased camera range would not 

have any effect.  Therefore, we recommend increasing the combat radius of the USV 

from the HVU.  Since the Spartan Scout is controlled by radio frequency this could be 

accomplished by broadcasting the radio frequency via an airborne relay, instead of the 

ship’s mast.  

 

B. AGENT-BASED SIMULATION EXPERIMENTS 
Agent-based modeling is a tool that can be used by the military to represent 

individual entities that are a part of a larger group, but ultimately have the same orders.  

The individual entities are given the orders but are each able to look at the current 

environmental conditions and determine the best movement and action for the individual 

agent and is still within compliance of the original orders.  The simulation provides ways 

to analyze situations where actual field experimentation is either impossible to do 
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thousands of times or the risk to the personnel and cost of the equipment is too high to 

duplicate thousands of times.  Utilizing agent-based simulation, military applications can 

be looked at without having to put military personnel at risk as well as saving potential 

equipment and monetary losses.  

The above paragraph is a moot point when the level of fidelity and resolution 

cannot be reached.  There are downfalls to using any time step simulation platform.  One 

mentioned previously is the challenge of defining the length of a time step in the terms of 

the simulation model, while maintaining a preset distance representation and reasonable 

speeds.  Such a restriction can cause the loss of resolution either in the distance a pixel 

represents or in representing what happens during the length of a single time step.  In 

addition to the length of the time step, modeling the waypoints required the speed and 

waypoint distances to be synchronized appropriately.  This too was a function of the time 

step.  Discrete-event simulation, where the future events drive the time clock, would 

eliminate the need to monitor agents locations and actions only at predetermined times.  

Instead, the simulation would keep track of when the next event will occur, move the 

time clock to that point, and update the agents’ states and positions appropriately. 

Converting PYTHAGORAS to a discrete-event platform would not be a simple 

task, but if discrete-event models similar to the Waypoint, Interceptor, and Force 

Protection scenarios could be built, it would be interesting to compare results to those of 

this thesis.  If expanded or new models of USV deployment are built in PYTHAGORAS 

or a similar time step modeling platform, we recommend thinking carefully about what 

the pixels represent, potential speeds that will be used and the desired resolution of the 

time step before developing the scenarios.  In this thesis, we arbitrarily picked a distance 

to be represented by a pixel in the initial scenario-building process.  Later on, there were 

very few options for choosing the time step representation that allowed the simulation 

models to work as desired without rescaling all of the distances. 

Another recommendation is to make the agents change their behaviors and/or 

properties using some mechanism other than triggers activated by color changes, since 

the color changes also determine whether agents perceive other agents as friendlies, 

neutrals, or enemies.  The most prominent illustration is in Scenario-FP.  
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PYTHAGORAS is set up so that the different agents in a class have speeds within a 

defined tolerance, but each individual USV does not change speed if even if it detects and 

begins chasing a threatening enemy.  Adding the ability for the agents to change speeds 

when in pursuit of an enemy would make the model more like the tactical scenario of 

Force Protection.   

Despite these caveats, the DOE approach was extremely valuable for exploring 

the scenarios and uncovering insights.  Future studies should continue to examine many 

factors simultaneously.  Using stepwise regression simplifies the process of determining 

which factors are not important, especially since the full models contain 65 or 77 factors.  

This automated procedure did not do all of the work and is not a substitute for human 

judgment: the results still needed manual tweaking to achieve a solid model with a 

simplified list of terms.   

Regression trees are very useful when linear regression does not provide adequate 

models.  This non-parametric analysis was able to give insights for the MOEs with only a 

few factors in a comprehensible manner.  Other insights to draw from the thesis: although 

regression does a good job of making prediction equations, it cannot be done on all sets 

of data.  Sometimes other means are necessary, such as regression trees, to find 

relationships between the factors varied in the DOE and the outcomes.  

 

C. RECOMMENDATIONS FOR FUTURE WORK 
An exploratory investigation inevitably leads to more questions.  With simulation 

as the medium for generating data, simplifying assumptions must be made.  This, in 

itself, is not a negative comment because the purpose of modeling is to extract the 

essential characteristics of a system.  For this thesis, assumptions were made on certain 

aspects of the USV, its operations, and its environment.  These are described in earlier 

chapters so the reader can understand what has and has not been included in the 

modeling.  However, some of these could be looked at more in depth to see if relaxing 

assumptions provides a more accurate representation of real-world operations.  

Additionally, some other aspects of the FP scenario merit further research.  Brief 

descriptions follow. 
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1. Analysis with METOC Factors Included 

The meteorological factors omitted from the scenarios are the wind, current, tides, 

and sea temperatures.  Based on the Joint Meteorology and Oceanography (METOC) 

Handbook and the USSOC Manual Number 525-6, factors other than wave height need to 

be analyzed in order to keep the crew and equipment as safe as possible.  The analysis in 

this thesis only considers the wave height since we believed a priori that this would have 

the largest impact.  Designing an experiment that includes a more detailed meteorological 

representation, as well as the factors used in the current analysis, could yield a more 

accurate sense of how the USV will behave in the open seas.   

2. High Sea States  

USVs are a very new technology, and this thesis is the first time PYTHAGORAS 

has been used for USV support.  There currently is not a precise, or even ballpark, way to 

determine if the scenario is accurately defining the situation in high seas, due to lack of 

tactical data.  This influenced our decision to set up scenarios only for the USV’s 

“favorable” operating conditions (sea states 1, 2, and 3).  Wave heights of 6-8 feet are 

“marginal” operating conditions for USVs.  This range is above sea state 3, and the USV 

performance behavior is likely to be quite different when it is operating in marginal 

conditions rather than operating in favorable ones (Joint METOC Handbook, 2000).   

As USVs are given more opportunity to be tested and utilized, data could be 

collected under high sea state operations.  This type of information could, in turn, be used 

to build and perhaps even calibrate models for USV operations in high sea states.  The 

approach described in this thesis provides a template for this type of analysis, and 

combining the results could very well give a good overall view of the conditions in which 

the USV can operate effectively. 

3. Rescale Simulation Model  

As mentioned previously, latency was not included due to the time step length.  A 

change to the scale of the model, allowing the time step to be smaller, would permit the 

agents’ behaviors between the current 72-second time steps to be drawn out of the 

simulation. To change the scale, the pixel definition and the scale of the speed have to be 

altered.  The time step would have to be changed so that the fraction of a second needed 

for the host ship to record information from the USV is noticed.  Changing this feature in 
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the modeling might give more accurate answers to the questions presently posed in the 

current analysis, although at the cost of a larger computing effort.   

Along with changing the actual scale of the models, it would be useful to have a 

closer look within the range of factors that are varied.  For example, the number of 

contacts was extremely exaggerated so potential threshold values were not missed.  Since 

there are thirty-three levels on a range of 1-500, different NOLH designs involving more 

factor levels could be used so that greater fidelity is seen through out the range.  With 500 

contacts in a 1600 sq-nm area, the maximum contact density is one contact per 

approximately three square nautical miles.  Greater control over models would support 

higher contact densities in more focused area of operations.  

4. The Effect of Threatening Enemies Reaching the HVU in the Force 
Protection scenario 

Taking a look at how the USVs react when a hostile enemy reaches the HVU 

could be the next step into determining the purpose of the USV when a threat is 

imminent.  One view is that the HVU would have much more on its hands than worrying 

about what the USVs are doing at this point since it is known that the personnel of the 

HVU are going to be in grave danger when a threatening contact is under the nose of the 

ship.  However, there may still be a need for the USVs once the threatening contacts 

reach a certain radius within the HVU.  This could be modeled in PYTHAGORAS, or 

some other agent-based platform, but the scenario should represent the attack on the 

HVU, the USVs reactions, and the aftermath.  Such a scenario would probably involve a 

more detailed representation of the HVU, such as allowing the HVU to move. 

 

D.   SUMMARY 

Preventing fatal incidents such as the April 2004 maritime interdiction operations 

occurrence is an advantage to implementation of the USV into Naval missions.  In this 

thesis, multiple linear regression and regression trees are coupled with a DOE that 

analyzes up to 11 factors simultaneously.  These illustrate how the USV can be 

introduced into the Fleet to effectively assist in ISR and FP activities.  The results provide 

several operational and tactical insights, and form the basis for a recommendation to the 

US Navy to use the USV in an active role in maritime missions.  They also provide 
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guidance on the benefits of improving USV sensing and endurance capabilities, and 

reveal that simply maximizing numbers of USVs is not necessary for attaining high 

mission performance. 
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